Репликация рнк вирусов. Репликация вирусов. Аденозинтрифосфорная кислота – АТФ

Репликация вирусов 99

бактерий реплицируются по тета-механизму. Механизм «катящегося кольца» изучался преимущественно на стафилококковых и стрептококковых плазмидах.

4.8 Репликация вирусов

Репликация вирусов происходит в несколько стадий:

1. Адсорбция : вирус контактирует с клеткой специфическими молекулами на своей поверхности: например, ортомиксовирусы и парамиксовирусы адсорбируются с помощью гликопротеинов , а аденовирусы - с помощью пентоновых волокон . В адсорбции участвуют специфические клеточные рецепторы: гликопротеины , фосфолипиды или гликолипиды .

Адсорбция может быть нарушена антителами, связывающимися с вирусной оболочкой или самой клеткой хозяина.

2. Проникновение (пенетрация) следует сразу за адсорбцией. После этого вирусную частицу уже невозможно отделить от клетки хозяина, не повредив её. Механизмы проникновения:

а. Прямое проникновение : капсид остаётся связанным с внешней поверхностью клеточной мембраны, а его содержимое попадает внутрь клетки.

б. Слияние с мембраной. в. Эндоцитоз.

3. Разрушение оболочки происходит благодаря закислению среды эндосомы, в которой находится вирусная частица, до pH = 5. За это ответственны протонные насосы H+ -АТФазы в мембранах эндосом. Низкие значения pH приводят к изменению конформации компонентов вирусной оболочки, которые своими гидрофобными участками начинают контактировать с мембранами эндосом, это приводит к попаданию вируса в цитозоль.

4. Репликация вирусного генома становится возможной, благодаря переключению клеточных систем синтеза на репликацию и транскрипцию вируса. Для этого вирус приостанавливает синтез белка клеткой и диссоциирует полирибосомы. Некоторые вирусы не только не блокируют клеточные синтезы, но и ускоряют их.

5. Сборка вирионов.

6. Выход вирионов из клетки .

А Репликация генома ДНК-вирусов

У ДНК-вирусов животных процессы транскрипции и трансляции не сопряжены (кроме поксвирусов): транскрипция происходит в ядре, а трансляция - в цитоплазме. Вирусная ДНК служит матрицей для синтеза вирусной мРНК, которая является матрицей для синтеза вирусных белков. Вирусная ДНК содержит «ранние » и «поздние » гены, которые транскрибираются в разное время.

- «Ранние» гены кодируют белки и ферменты, необходимые для начала репликации вирусного генома.

- «Поздние» гены кодируют белки, участвующие в созревании и сборке вирусных частиц.

Репликация вирусов с дцДНК схожа с нормальной репликацией клеточной ДНК. Геном большинства таких вирусов попадает в ядро, где транскрибируется и реплицируется клеточными полимеразами. Так реплицируются, к примеру, вирусы герпеса и папилломавирусы. Однако есть два исключения:

1. Каждая часть вириона поксвирусов синтезируется и собиратся в цитоплазме. Ядро в их репликации не участвует.

2. Геном вируса гепатита B реплицируется иначе: синтезируется РНК-по- средник, а затем в ходе обратной транскрипции синтезируется ДНК на

матрице РНК.

Репликация вирусов с оцДНК тоже происходит в ядре, куда вирусная ДНК проникает после попадания в клетку. Там синтезируется вторая цепь ДНК, комплементарная вирусной. Вместе они образуют дцДНК. Далее всё происходит по вышеописанному механизму: синтез белков, репликация вирусной ДНК и сборка вирионов.

Примеры репликации у различных семейств вирусов:

1. Аденовирусы реплицируют свой геном ассиметрично: репликация начинается на 3’-конце одной из цепей с помощью белкового праймера. Растущая дочерняя цепь ДНК вытесняет одну материнскую и образует полный дуплекс с другой материнской цепью. Вытесненная цепь тоже реплицируется и образует дуплекс.

2. Герпесвирусы имеют линейный геном с терминальными повторами. После попадания в ядро эти повторы частично отщепляются и соединяются, образуя кольцевой дуплекс ДНК. Далее происходит репликация по механизму «катящегося кольца». В ходе созревания вирусной частицы кольцевая ДНК разрезается и снова становится линейной.

3. Паповавирусы имеют кольцевую ДНК, а её репликация происходит по тета-механизму (симметрично и двунаправленно).

4. Парвовирусы имеют одноцепочечную ДНК (положительную или отрицательную), поэтому их репликация начинается, когда две цепи («+» и «– ») из разных вирусных частиц формируют дуплексную спираль ДНК.

5. Поксвирусы имеют необычную двухцепочечную ДНК, концы которой связаны. Их промежуточные реплицированные ДНК, обнаруживаемые в цитоплазме, представляют собой конкатемеры, соединённые «голова-к- голове» или «хвост-к-хвосту».

6. Гепаднавирусы , как, к примеру, вирус гепатита B, используют обратную транскрипцию для репликации. Их геном состоит из частично двухцепочечной кольцевой ДНК с полной отрицательной цепью и неполной положительной. После попадания в клетку положительная цепь достраивается и транскрибируется. Транскрипты РНК становятся матрицей для синтеза ДНК в ходе обратной транскрипции с помощью вирусных ферментов.

Репликация вирусов 101

Б Репликация генома РНК-вирусов

РНК-вирусы можно разделить на 4 группы (см. Рис. 71 ▼ ):

1. Вирусы с положительной одноцепочечной РНК (оцРНК+).

2. Ретровирусы (разновидность оцРНК+).

3. Вирусы с отрицательной одноцепочечной РНК (оцРНК–).

4. Вирусы с двухцепочечной РНК (дцРНК).

Одноцепочечная РНК, способная быть матрицей в биосинтезе белка (т.е. выполнять роль мРНК), называется положительной РНК или РНК+ . Соответственно, отрицательная РНК или РНК– не способна служить матрицей в синтезе белка.

Репликация вирусов с оцРНК+. Как только вирусная оцРНК+ попадает в клетку хозяина, она сразу же транслируется на белок рибосомами. В ней закодированы белки капсида и вирусная РНК-полимераза. Непосредственно репликация вирусной оцРНК+ идёт в два этапа:

1. Сначала на матрице положительной вирусной оцРНК+ синтезируется комплементарная цепь отрицательной РНК (оцРНК– ). Этот синтез осуществляет вирусная РНК-полимераза.

2. Затем такая отрицательная РНК транскрибируется и образуются новые молекулы положительной оцРНК +. Они и участвуют в сборке вирио-

нов. Этот процесс уникален для вирусов, поскольку ни одна клетка не транскрибирует РНК с РНК.

Примером вируса с оцРНК+ является полиовирус (вирус полиомиелита). Репликация ретровирусов . Ретровирусы тоже содержат оцРНК+. Однако в от-

личие от других подобных вирусов, они не используют её в качестве мРНК. Репликация ретровирусов идёт следующим образом:

1. Обратная транскриптаза вируса, содержащаяся внутри его капсида, синтезирует ДНК на матрице оцРНК+.

2. Затем эта ДНК затем служит матрицей в синтезе новых оцРНК+ , выступающих в качестве мРНК и одновременно образующих новые вирионы.

Примером ретровируса является ВИЧ.

Репликация вирусов с оцРНК– . РНК этих вирусов не может транслироваться на белок напрямую, поскольку не узнается рибосомами. У данных вирусов репликация происходит с помощью собственной РНК-зависимой РНК-транскриптазы (находится внутри капсида и попадает в цитоплазму вместе с вирусным геномом после проникновения в клетку):

1. РНК-транскриптаза синтезирует оцРНК+ на матрице вирусной оцРНК–.

2. Синтезированная оцРНК+ выступает в роли мРНК и служит матрицей в синтезе новых оцРНК– . Последние включаются в состав вирионов.

Примерами вирусов с оцРНК– являются вирусы гриппа и бешенства. Репликация вирусов с дцРНК . Двухцепочечная РНК этих вирусов состоит из

РНК+ и РНК– цепей. Их репликация идёт по следующему сценарию:

1. После попадания в цитоплазму вирусная РНК-полимераза использует дцРНК для синтеза оцРНК+ (матрицей служит отрицательная цепь РНК). ОцРНК+ цепь выполняет роль мРНК, т.е. транслируется рибосомами на

Текущая страница: 5 (всего у книги 45 страниц) [доступный отрывок для чтения: 11 страниц]

Шрифт:

100% +

Cis-аcting сигналы и специфичность репликации. Репликация и упаковка вирусных РНК являются удивительно специфичными процессами. Оба этих процесса безошибочно выбирают правильные вирусные молекулы из числа тысяч рибонуклеиновых кислот, содержащихся в клетке. Это в основном связано с присутствием сis-аcting сигналов, которые селективно определяют репликацию вирусных РНК и сборку вирионов, но в большинстве РНК-геномов вируса эти сигналы до конца ясно не идентифицированы.

Сигналы, которые были охарактеризованы, включают не линейные нуклеотидные последовательности, а вторичные структуры в виде петель, тРНК-подобных структур и псевдоузлов, которые создают специфические трехмерные молекулярные формы, способные взаимодействовать только с вирусными ферментами и структурными белками вируса. Однако понимание молекулярных основ специфичности репликации РНК и сборки вирионов ограничено недостатком знаний трехмерных структур вирусной РНК и ее действующих сis-аcting сигналов.

Структурные и неструктурные белки вирусов. По определению, вирусоспецифические структурные белки включены в вирусные частицы, а неструктурные белки найдены только в инфицированных клетках. Однако вирусы с негативным, амбиполярным и двунитевыми РНК-геномами включают в потомство вирионов RdRp и ассоциированные ферменты и поэтому кодируют преимущественно или исключительно структурные белки. В дополнение к полимеразе, кодируемые вирусом ферменты часто включают одну или несколько протеаз, РНК-хеликазу, гуанилил– и метилтрансферазы, поли-А-полимеразу, иногда нуклеазу, а в случае ретровирусов – ДНК-интегразу. В тоже время, для нескольких РНК-вирусов установлено участие в репликативном цикле ферментов клетки-хозяина.

Протеазы расщепляют продукт первичной трансляции, частью которого они являются, в высоко определенных последовательностях (сайтах). В некоторых клетках, инфицированных пикорнавирусами, они также выборочно запрещают синтез белка клетки-хозяина путем протеолиза клеточного кэп-связывающего белка. Хеликазы необходимы большим РНК-содержащим вирусам для разрушения внутримолекулярного спаривания оснований в течение синтеза РНК, хотя некоторые RdRp способны расплетать дуплексы РНК без ее помощи. Гуанилил– и метилтрасферазы строят 5’-кэп на мРНК почти у всех РНК-вирусов эукариот, кроме пикорнавирусов, РНК которых не кэпирована, и ортомиксо– и буньявирусов, которые крадут кэп у клеточных мРНК посредством кэп-специфической эндонуклеазы. На 3’-конце мРНК большинства вирусов животных находится поли-А трек, а у РНК-вирусов растений, как правило, тРНК-подобная структура. Полиаденилирование обычно происходит в результате побочной реакции (пробуксовывания) вирусной RdRp, а не в результате работы поли-А-полимеразы, как у поксвирусов.

Белки клетки-хозяина. Существенную роль в репликации РНК-содержащих вирусов могут играть белки клетки-хозяина. Следует отметить, что в различных вирусных системах в этот процесс вовлечены различные клеточные белки. Самым ярким примером является РНК-репликаза бактериофагов Qb и MS2, у которых, в дополнение к единственному фагоспецифическому полипептиду для обеспечения полимеразной активности необходимо четыре клеточных субъединицы: рибосомальный белок S1 E.coli , два фактора элонгации трансляции и РНК-связывающий белок. У некоторых вирусов эукариот в репликацию РНК также могут быть вовлечены факторы трансляции хозяина. Например, у бромовирусов (вирусы растений) субъединица инициирующего фактора eIF-3 связывается с RdRp и увеличивает ее активность. В инфицированных клетках несколько других белков хозяина взаимодействуют с концевыми нуклеотидными последовательностями вирусных РНК. Среди них – поли-A– и полипиримидин-связывающие белки, карлетикулин и белки Ro и L, взаимодействующие с малыми ядерными РНК. Хотя следует отметить, что отличить случайные взаимодействия от тех, которые играют функциональные роли, часто затруднительно.

Мембраны клетки-хозяина. В отличие от фаговых репликаз, RdRp вирусов эукариот неизменно связана с надмолекулярными структурами: мембранами клеткихозяина у (+)РНК-вирусов, нуклеокапсидом у (-)РНК-вирусов и субвирусными частицами у днРНК-вирусов. Внутриклеточные мембраны клеток, инфицированных вирусами с (+)РНК-геномом, подвергаются быстрому перераспределению, формируя места заякоривания вирусных репликативных комплексов. Когда эти комплексы отсоединяются от мембран, они теряют способность катализировать истинную репликацию РНК, хотя часто сохраняют ограниченную способность копировать РНК-матрицу. При изучении нодавирусной инфекции истинная РНК-репликазная активность частично очищенной RdRp была восстановлена путем добавления к бесклеточному экстракту глицеролфосфолипидов. Эти результаты подтвердили идею, что мембранная организация играет центральную роль в репликации (+)РНК. То же самое заключение получено при ингибировании репликации РНК полиовируса брефелдином А, который блокирует внутриклеточные мембранные взаимодействия. Хотя определенная роль мембран неясна, вероятно, они могут ускорять сборку репликативных комплексов, сокращая время процесса и отделяя дочерние молекулы от матриц.

Механизмы репликации РНК-геномов. Как уже отмечалось, репликация РНК-геномов осуществляется вирусоспецифической RdRp, которая может входить в состав вириона или детерминироваться геномом. В отличие от ферментов, которые копируют ДНК с использованием затравки, большинство RdRp могут начать синтез РНК de novo . Исключением является RdRp пикорнавирусов, которая для инициирования синтеза использует маленький вирусный белок (VPg), ковалентно связанный с урацилом. VPg удаляется при трансляции генома, но сохраняется при его инкапсидации.

Интересно, что у тогавирусов (вирус Синдбис), репликация (+)РНК на стадии синтеза минус-нити (образование РФ) осуществляется только переходной версией RdRp, которая впоследствии протеолитически процессируется, что переключает матричную специфику RdRp на синтез положительных нитей.

Репликациция (+)РНК полиовирусов .

Полиовирусы – мелкие (27 нм) безоболочечные икосаэдрические вирусы, поражающие позвоночных. Геном – линейная однонитевая РНК позитивной полярности. На 5"-конце РНК ковалентно связана с терминальным геномным белком через остаток тирозина, 3"-конец полиаденилирован (рисунок 8).

Репликацию/транскрипцию генома осуществляет РНК-полимераза, детерминированная 3"-концом генома, который транслируется сразу после попадания вируса в клетку. На первой стадии репликации происходит образование двухнитевой РФ за счет синтеза минус-нити, инициированного присоединением молекулы урацила к 3"-поли-А концу.


Рисунок 8 – Схема репликации РНК полиовирусов


Кроме РНК-полимеразы в клетке синтезируется вирус-специфический терминальный низкомолекулярный белок (VPg), который через тирозин связывается с молекулой урацила. Данная структура используется РНК-полимеразой в качестве затравки – то есть происходит терминальная инициация с использованием нуклеотидбелковой затравки. Синтез идет с вытеснением цепи. Образующиеся молекулы (+)РНК до накопления достаточного количества вирусоспецифических белков используются как мРНК, после чего они начинают инкапсидироваться в вирусную частицу.

Следует отметить, что представленная схема репликации геномной (+)РНК полиовирусов не является универсальной. Вирусные (+)РНК-геномы различаются организацией 5"– и 3"-концевых структур, что определяет особенности их репликации, связанные с инициацией синтеза.

Репликациция (-)РНК-геномов .

Вирусные (-)РНК-геномы могут быть непрерывными или сегментированными. Во всех случаях РНК находится в составе рибонуклеопротеина, что и определяет особенности ее репликации, поскольку депротеинизированная РНК не может служить матрицей для полимеразы. Все вирусы с (-)РНК-геномом имеют собственную РНК-зависимую РНК-полимеразу, входящую в состав РНП. Для получения полноразмерного генома должна быть синтезирована репликативная полноразмерная плюс-нить. Однако на первом этапе репродуктивного цикла геномная (-)РНК служит матрицей для транскрипции, которая протекает с последующим процессингом мРНК, и не может служить матрицей для синтеза полноразмерной копии. Синтез репликативной полноразмерной (+)РНК начинается только после накопления соответствующих вирусных белков, подавляющих преждевременную терминацию РНК на внутренних участках матрицы. Каким образом это происходит, остается пока неизвестным. Синтез антигеномной и геномной РНК происходит в составе РНП.

Репликациция днРНК реовирусов .

Реовирусы – двукапсидные (60-75 нм) частицы с икосаэдрическим типом симметрии, инфицируют позвоночных, беспозвоночных, растения. Геном состоит из 10-12 фрагментов днРНК.

Репликация днРНК неразрывно связана с транскрипцией, которая является ее первой стадией.

1 Синтез (+)РНК на двухнитевой матрице протекает по консервативному типу без вытеснения цепи и происходит в составе однокапсидной вирусной частицы при участии белков кора – вирусной РНК-зависимой РНК-полимеразы (VP2) и гуанидилтрансферазы (VP3). мРНК покидают частицу через поры внутреннего капсида.

2 Плюс-нити РНК объединяются с вновь синтезированными белками кора и неструктурными (NS) белками. При созревании вириона РНК-полимераза осуществляет синтез минус-нитей на матрице (+)РНК по репарационному механизму, затягивая ее внутрь формирующегося капсида. Сформированная однокапсидная частица может снова начать синтез плюс-нитей РНК.

Как и в случае полиовирусов, представленный способ репликации генома реовирусов не является универсальным для вирусов с днРНК геномом. Например, у фага φб синтез плюс-нитей на родительском дуплексе происходит по полуконсервативной модели и всегда сопряжен с вытеснением предшествующей нити (+)РНК.

3.7.1.3 Основные принципы и механизмы репликации ДНК-геномов вирусов

В процессе репликации ДНК-содержащие вирусы осуществляют некоторые шаги, которые отсутствуют у РНК-геномных вирусов. Для большинства ДНК-содержащих вирусов генетические стратегии включают: транспорт ДНК вириона в ядро клетки, инициирование транскрипции с этой ДНК, индукцию транскрипции дополнительных вирусных генов, подготовку клетки для репликации ДНК вируса, дублирование ДНК-генома, упаковку ДНК в вирионы и выход вирусных частиц из ядра. Кроме этого, многие ДНК-вирусы развили уникальные механизмы уклонения от иммунной защиты организма и способность вызывать опухоли у животных. В процессе близких отношений со своими хозяевами, вирусы эксплуатируют ключевые клеточные регуляторные системы и узурпируют важные клеточные процессы. В связи с этим, изучение различных аспектов репликации ДНК-вирусов обеспечивает новые фундаментальные знания о молекулярных процессах, происходящих в клетке, включая выражение генов, репликацию ДНК и контроль за циклом клеточного деления.

Подготовка клеток для репликации вирусной ДНК. В ходе продуктивной вирусной инфекции многие ДНК-вирусы из единственной молекулы генома могут получить 100000 или больше копий генома в течение нескольких дней. Для этого требуется работа множества белков, включая ДНК-связывающие белки и полимеразы, а также обильная поставка нуклеотидов. Репликация некоторых ДНК-вирусов происходит только в клетках, которые естественно реплицируют свою собственную ДНК, обеспечивая тем самым необходимую клеточную среду для репликации вирусной ДНК. Другие ДНК-вирусы также в значительной степени полагаются на клеточные системы репликации ДНК, но эти вирусы кодируют белки, стимулирующие клеточный цикл деления. Наконец, некоторые из самых больших ДНК-содержащих вирусов ограничено используют клеточный репликативный аппарат, т.к. сами кодируют вирусные версии многих из необходимых белков.

К первой группе вирусов относятся самые простые ДНК-содержащие вирусы семейства Parvoviridae , которые имеют линейный однонитевой геном. Парвовирусы могут реплицировать свою ДНК и осуществлять полный инфекционный цикл только в клетках, находящихся в стадии репликации ДНК – то есть в S-фазе клеточного цикла.

Фактически, экспрессия вирусных генов не активизируется до тех пор, пока клетка не войдет в S-фазу и ДНК-геном вируса не будет преобразован в двунитевую РФ, которая является матрицей для транскрипции. Однако, в отличие от других вирусов, которые требуют, чтобы клетки активно копировали свою ДНК, парвовирусы неспособны стимулировать переход клетки в S-фазу. В связи с этим, они могут выполнять успешную репродукцию только в том случае, если попадают в клетку, уже осуществляющую синтез ДНК. Некоторые парвовирусы, особенно аденассоциированный вирус (AAV), имеют даже более строгие требования и могут копироваться только в присутствии помощника – аденовируса или вируса герпеса, генные продукты которых активируют экспрессию геновпарвовируса и репликацию его ДНК.

Другие ДНК-вирусы для того, чтобы создать условия для репликации своей ДНК, стимулируют клетки к делению. Для этих вирусов репликация вирусной ДНК является результатом взаимодействия между клеточными репликативными белками и вирусными белками, которые прямым образом участвуют в репликации, а также белками– инициаторами, которые локализуются в точке начала репликации вирусного репликативного аппарата. Эти ДНК-вирусы перестраивают репликативный аппарат клетки на вирусную репликацию, участвуя в белок-белковых взаимодействиях с ключевыми клеточными регуляторными молекулами, некоторые из которых выполняют роль шаперонов, что позволяет им стабилизировать белковые комплексы. Часто, эти взаимодействия приводят к нейтрализации клеточных белков-репрессоров опухоли типа транскрипционного фактора p53 и членов семейства ретинобластомых белков (Rb) и, как следствие, к активации клеточного роста.

Вирусные белки, которые стимулируют репликативное состояние клетки, обычно инактивируют членов семейства Rb – P105Rb, p107, и p130. Инактивация Rb предотвращает репрессию клеточного деления и разрешает E2F-опосредованную транскрипцию, что стимулирует выражение многочисленных клеточных белков, требуемых для S-фазы, включая ДНК-полимеразу α, тимидинкиназу, рибонуклеотидредуктазу и тимидилатсинтазу. Некоторые вирусные белки, например, Е1А аденовирусов и Е7 папиломавирусов человека, непосредственно связывают Rb белки и ингибируют их функцию, и таким образом активируют E2F. Другие вирусные белки регулируют активность циклин-зависимых киназ (Cdks), которые катализируют фосфорилирование Rb, приводя к активации E2F и транскрипции E2F-регулируемых генов. Ряд вирусных белков могут косвенно влиять на регуляцию клеточного цикла деления. Например, E1B-55КБ и E4orf6 белки аденовирусов и E6 папиломавирусов запрещают действие транскрипционного фактора p53 через взаимодействие с CBP/p300, который является коактиватором гена p53. Отмена функции p53 приводит к уменьшенной экспрессии ингибитора клеточного деления p21 (репрессор комплекса Cdk–циклин), таким образом активируя Сdk и соответственно переход клеток в S–фазу. Точно так же, аденовирусный E1A связывает p27, который является ингибитором Сdk, нейтрализуя его эффекты. Большой T антиген обезъяньего вируса SV40 не только связывает и инактивирует Rb и p53, но и выполняет несколько функций, непосредственно требуемых для репликации ДНК вируса. Другой механизм используют средний T-антиген полиомавирусов и белок E5 папиломавирусов быка. Эти белки активируют сигнальный каскад, опосредованный рецептором фактора роста, и возможно стимулируют экспрессию регуляторной субъединицы Сdk – циклина D, таким образом стимулируя активность Сdk и фосфорилирование белков семейства Rb. Некоторые белки вирусов герпеса и гепаднавирусов по всей вероятности также стимулируют каскады сигнальных путей, активизируя внутриклеточные белки передачи сигнала NFKB, P21ras и pp60c-src.

Индукция набора клеточных репликативных белков имеет глубокие последствия на клетку-хозяина, которая насильно побуждается к репликации ДНК. Когда пролиферативный сигнал устойчиво поддерживается, например, в непермиссивных клетках, которые не способны поддерживать репликацию вирусной ДНК, клетки могут подвергнуться устойчивой трансформации. Таким образом, мало того, что многие ДНК– вирусы стимулируют статические клетки к повторным циклам деления, они также трансформируют клетки в культуре и вызывают опухоли у животных. Рассмотренная способность многих опухолеродных ДНК-вирусов стимулировать неограниченный рост клеток не является особенностью нормальной репликации вирусов, а скорее представляет собой аберрантный ответ клеток на вирусную инфекцию. В соответствии с этим, парвовирусы, неспособные стимулировать репликацию клеточной ДНК, являются одними из немногих ДНК-содержащих вирусов, которые не трансформируют клетки. Однако способность вирусов стимулировать синтез клеточной ДНК не всегда коррелирует с их способностью трансформировать клетки. Например, одни вирусы герпеса стимулируют синтез ДНК, другие нет, и, тем не менее, они фактически запрещают быстрое клеточное деление. Такие большие вирусы с их большой кодирующей емкостью способны создать надлежащую среду для репликации вирусной ДНК без активации клеточного репликативного аппарата.

Необходимость нуклеотидов для репликации ДНК. Как описано выше, для репликации парвовирусов необходимо, чтобы клетки находились в S-фазе, а папиломавирусы, полиомавирусы и аденовирусы стимулируют клетки, чтобы ввести Sфазу, требующую для синтеза ДНК большой концентрации дезоксинуклеозидтрифосфатов (дНТФ). Через воздействие на членов белковых семейств Rb и E2F, папиломавирусы и аденовирусы стимулируют синтез фермента рибонуклеотидредуктазы, который требуется для поддержания достаточного для вирусной репликации уровня дНТФ. Напротив, вирусы герпеса и поксвирусы способны реплицироваться в покоящихся клетках. Одной из причин того, что эти вирусы могут обходить требование к S-фазе является их способность кодировать ферменты для синтеза дНТФ – рибонуклеотидредуктазу и тимидинкиназу. В случаях вируса герпеса и вируса опоясывающего лишая/ветряной оспы вирусная тимидинкиназа является ключевой точкой для противовирусной химиотерапии, потому что этот вирусный фермент фосфорилирует аналоги нуклеозида, такие, как ацикловир, более эффективно, чем это делают клеточные ферменты. Преобразованные в фосфорнокислую форму эти аналоги дНТФ выборочно вредят репликации ДНК герпесвирусов.

Независимо от вида ДНК-генома единицей его репликации является так называемый репликон – единица генома, способная к автономной репликации. Репликон представляет собой нуклеотидную последовательность, расположенную между точкой начала репликации (origin или ori) и точкой окончания репликации (terminus). Процесс репликации ДНК разделен на три стадии: инициация цепи, элонгация (удлинение) цепи и терминация синтеза. Вирусы с различными видами ДНК-генома реализуют оригинальные стратегии репликации. При этом главные особенности наблюдаются при инициации синтеза.

Основные принципы репликации ДНК-геномов вирусов.

Инициация синтеза ДНК. Большинство ДНК вирусов эукариот (кроме поксвирусов) копирует свои геномы в ядре. Репликация ДНК-геномов вирусов инициируется в специфических точках ori.

В отличие от клеточных ориджинов, которые активируются один раз в течение клеточного цикла, вирусные точки ori могут срабатывать много раз в течение отдельного цикла репликации. Инициация синтеза цепи ДНК может происходить только при наличии затравки для ДНК-полимеразы. Вид затравки и способ ее образования различаются у разных вирусов и определяют своеобразие вирусных репликативных систем. Различают три основных способа инициации синтеза ДНК (смотри пункт 3.7.1.1, с. 63).

Элонгация цепи при репликации вирусных геномов принципиально не отличается от процесса синтеза клеточных ДНК. Используются ферменты, вспомогательные белки и репликационные белки, принадлежащие как клетке-хозяину, так и вирусу. Синтез ДНК, как правило, осуществляет ДНК-зависимая ДНК-полимераза α. Основным свойством синтеза является его полярность, при которой очередной нуклеотид присоединяется к 3’– концу растущей цепи. То есть направление синтеза идет от 5’– к 3’-концу, считывание – от 3’– к 5’-концу. Особенности синтеза комплементарных нитей связаны со способом инициации. На днДНК-матрице синтез идет через образование репликативной вилки (рисунок 9) или с вытеснением цепи, на онДНК матрице – по репарационному механизму.

В репликативных вилках одна нить (ведущая) копируется непрерывно в направлении от 5’– к 3’-концу. Поскольку другая нить (отстающая) должна также синтезироваться от 5’– к 3’-концу, она копируется с перерывами, многократно инициируя синтез и соединяя короткие фрагменты Оказаки. Синтез ДНК в репликативной вилке обеспечивается целым набором белков-ферментов, которые могут иметь разное происхождение. Мелкие ДНК-содержащие вирусы используют клеточные репликативные белки. Лучше всех изучена репликация полиомавируса SV40, где вовлеченные репликативные белки были идентифицированы в бесклеточной системе in vitro .


Рисунок 9 – Схема репликации ДНК с использованием репликативной вилки


Установлено, что в репликации ДНК SV40 принимают участие 10 белков. Девять из них имеют клеточное происхождение: ДНК-полимераза α (ответственна за инициацию синтеза ДНК в точке ori и синтез отстающей нити); праймаза (связана с ДНК-полимеразой и праймирует синтез фрагментов Оказаки); ДНК-полимераза d (ответственна за синтез лидирующей нити и завершение синтеза фрагментов Оказаки); пролиферативный клеточный ядерный антиген (PCNA), который связывается с ДНК-полимеразой d и формирует кольцо вокруг ДНК, увеличивая процессивность полимеразы; гетеропентамерный репликативный фактор C – RF-C (присоединяет кольцо PCNA на ДНК и стимулирует полимеразу d); RPA – онДНК-связывающий белок; РНаза H (удаляет все кроме одного рибонуклеотиды РНК-праймера); экзонуклеаза FEN-1, также известная как MF-1 (удаляет оставшейся рибонуклеотид); ДНК-лигаза I (лигирует фрагменты Оказаки); топоизомераза I и/или топоизомераза II (снимает сверхспирализацию в течение синтеза). Единственный вирусный белок, который требуется для репликации ДНК SV40 – это большой T-антиген, который обладает свойствами хеликазы и обеспечивает расплетение двунитевой структуры в репликативной вилке.

Другие вирусы сами обеспечивают почти все белки репликативной вилки. Например, фаза элонгации при репликации ДНК аденовируса в условиях in vitro обеспечивается одной аденовирусной субъединицей ДНК-полимеразы, аденовирусным однонитевым ДНК-связывающим белком, который может увеличивать процессивность полимеразы, и клеточной топоизомеразой I или II. Это простота частично связана с необычным характером репликации ДНК аденовируса, в которой отсутствует синтез отстающей цепи.

Крупные ДНК-вирусы еще в большей степени обеспечивают себя ферментами репликации. Например, вирусы герпеса кодируют ДНК-полимеразу, фактор элонгации, праймазо-хеликазный комплекс, однонитевой ДНК-связывающий белок и, вероятно, еще ряд вирусных белков, которые не идентифицированы.

Терминация синтеза. В случае кольцевых геномов окончание синтеза и расхождение геномов упрощены, поскольку синтез дочерней цепи идет по кругу и в конце полного оборота в точке ori или при двунаправленной репликации в середине кольца 3’– и 5’-концы вновь синтезированной цепи совмещаются и лигируются. Попарно сцепленные кольца разъединяются топоизомеразой. В линейных ДНК, синтезированных с помощью РНК-затравок, все обстоит сложнее. Удаление РНК-праймера дает молекулу ДНК с выступающим 3’-концом и пробелом на 5’-конце. Предложено два способа завершения репликации с образованием полной копии матричной цепи: с использованием конкатамеров или через образование шпильки.

Основные схемы репликации ДНК-геномных вирусов .

1 Терминальная инициация с помощью самозатравочного механизма.

2 Терминальная инициация с помощью белок-нуклеотидной (Б-Н) затравки.

3 Механизм катящегося кольца.

4 Схема Кернса.

5 Репликация через интеграцию.

1 Репликация с использованием терминальной инициации при помощи самозатравочного механизма (рисунок 10). Такой тип репликации геномной ДНК имеют парвовирусы, у которых геном представлен линейной онДНК, имеющей на обоих конца самокомплементарные последовательности, формирующие шпилечные структуры. 3’-конец ДНК имеет уникальную последовательность размером 125 нуклеотидов, образующую двунитевую Т-образную шпилечную структуру, которая играет роль затравки для ДНК-полимеразы.

ДНК-полимераза в результате репарационного синтеза комплементарной цепи воссоздает дуплекс, обе цепи которого на одном конце ковалентно соединены. При этом 3’-концевой сегмент родительского генома в качестве матрицы не используется. Следовательно, полного воспроизведения вирусного генома пока не произошло. На следующем этапе вирусоспецифический фермент вносит разрыв в родительскую цепь на границе между реплицированным и нереплицированным участками последовательности (между 125 и 126 нуклеотидами).


Рисунок 10 – Схема первых этапов репликации однонитевой ДНК парвовирусов


Концевые 125 нуклеотидов родительского генома становятся условной частью вновь синтезированной цепи и возникший таким образом 3’-конец родительской цепи используется для ее регенерации. В результате этих реакций возникает дисперсная двунитевая репликативная форма вирусной ДНК (рисунок 10). Далее следует цепь реакций, включающих образование на одном из концов ДНК-затравки в виде «заячьих ушек», синтез новой цепи с вытеснением родительской, образование еще одной репликативной формы. Вторая репликативная форма ДНК используется в качестве матрицы для дальнейшего синтеза вирусной ДНК, а вытесненная из дуплекса однонитевая молекула или вступает в репликативный цикл или входит в состав дочерней вирусной частицы.

2 Репликация с использованием терминальной инициации при помощи белокнуклеотидной затравки (рисунок 11). Такой тип репликации геномной ДНК имеют аденовирусы, геном которых представлен линейной днДНК, имеющей на 5’-концах инвертированные повторы и ковалентно присоединенные геномные белки с м.м. 55 кДа.

В инфицированной аденовирусом клетке синтезируется вирусоспецифический белок массой 80 кДа, который связывается через серин с дезоксицитидином. Образовавшаяся структура Б-Ser – dCTP является затравкой, которая через цитозин комплементарно связывается с 3’-концевым гуанозином генома и инициирует синтез цепи ДНК.

Инициация может наблюдаться на любом конце родительской ДНК и может происходить или одновременно или последовательно. При последовательной инициации синтез дочерней цепи сопровождается вытеснением одной из родительских, а синтез комплементарной цепи идет на однонитевой матрице по репарационному механизму. В тоже время обсуждается и другой механизм синтеза второй нити. Замещенная родительская однонитевая ДНК имеет на концах самокомплементарные инвертированные повторы, которые отжигаются, восстанавливая двунитевую точку ori, узнаваемую инициирующими белками, обеспечивающими синтез родительскодочернего дуплекса. Таким образом, каждый родительский дуплекс копируется полуконсервативно.


Рисунок 11 – Схема репликации генома аденовируса


Однако процесс протекает без синтеза отстающей цепи, т.е. без образования множественных сайтов инициации и синтеза фрагментов Оказаки.

3 Репликация кольцевых геномов по механизму катящегося кольца (рисунок 12). Катящееся кольцо – способ репликации, при котором репликационная вилка совершает множество оборотов на кольцевой матрице. Синтезирующаяся в каждом цикле нить вытесняет прежнюю (гомологичную) цепь двуцепочечной молекулы, синтезированную в предыдущем цикле, образуя хвост, состоящий из набора последовательностей, комплементарных одноцепочечному матричному кольцу. В общих чертах репликация по механизму катящегося кольца имеет следующие стадии:


Рисунок 12 – Схема репликации ДНК-геномов по механизму катящегося кольца


1 Вирусоспецифический фермент вносит однонитевой разрыв в уникальном сайте родительской цепи репликативной формы.

2 Фермент остается связанным с 5’-концом, освободившийся 3’-концевой нуклеотид служит затравкой для ДНК-полимеразы.

3 ДНК-полимераза присоединяет нуклеотиды комплементарно замкнутой цепи, то есть синтезируется только лидирующая цепь. 5’-конец родительской цепи вытесняется. Наблюдается образование сигма-молекул (δ).

4 После того, как репликационная вилка завершит чуть больше полного оборота, вытесненная цепь замыкается в кольцо, а фермент перемещается на вновь синтезированную нить и цикл повторяется. Таким образом, вновь синтезированная нить, имеющая последовательность геномной, становится компонентом РФ, а предшествующая (родительская) оказывается в свободном виде.

Генетическую информацию, закодированную в отдельном гене, в общем можно рассматривать как инструкцию по производству определенного белка в клетке. Такая инструкция воспринимается клеткой только в том случае, если она послана в виде мРНК. Поэтому клетки, у которых генетический материал представлен ДНК, должны «переписать» (транскрибировать) эту информацию в комплементарную копию мРНК. ДНК-содержащие вирусы по способу репликации отличаются от РНК-содержащих вирусов.

ДНК обычно существует в виде двухцепочечных структур: две полинуклеотидные цепочки соединены водородными связями и закручены таким образом, что образуется двойная спираль. РНК, напротив, обычно существует в виде одноцепочечных структур. Однако геном отдельных вирусов представляет собой одноцепочечную ДНК или двухцепочечную РНК. Нити (цепочки) вирусной нуклеиновой кислоты, двойные или одинарные, могут иметь линейную форму или замыкаться в кольцо.

Первый этап репликации вирусов связан с проникновением вирусной нуклеиновой кислоты в клетку организма-хозяина. Этому процессу могут способствовать специальные ферменты, входящие в состав капсида или внешней оболочки вириона, причем оболочка остается снаружи клетки или вирион теряет ее сразу после проникновения внутрь клетки. Вирус находит подходящую для его размножения клетку, контактируя отдельными участками своего капсида (или внешней оболочки) со специфическими рецепторами на поверхности клетки по типу «ключ – замок». Если специфические («узнающие») рецепторы на поверхности клетки отсутствуют, то клетка не чувствительна к вирусной инфекции: вирус в нее не проникает.

Для того чтобы реализовать свою генетическую информацию, проникшая в клетку вирусная ДНК транскрибируется специальными ферментами в мРНК. Образовавшаяся мРНК перемещается к клеточным «фабрикам» синтеза белка – рибосомам, где она заменяет клеточные «послания» собственными «инструкциями» и транслируется (прочитывается), в результате чего синтезируются вирусные белки. Сама же вирусная ДНК многократно удваивается (дуплицируется) при участии другого набора ферментов, как вирусных, так и принадлежащих клетке.

Синтезированный белок, который используется для строительства капсида, и размноженная во многих копиях вирусная ДНК объединяются и формируют новые, «дочерние» вирионы. Сформированное вирусное потомство покидает использованную клетку и заражает новые: цикл репродукции вируса повторяется. Некоторые вирусы во время отпочковывания от поверхности клетки захватывают часть клеточной мембраны, в которую «заблаговременно» встроились вирусные белки, и таким образом приобретают оболочку. Что касается клетки-хозяина, то она в итоге оказывается поврежденной или даже полностью разрушенной. У некоторых ДНК-содержащих вирусов сам цикл репродукции в клетке не связан с немедленной репликацией вирусной ДНК; вместо этого вирусная ДНК встраивается (интегрируется) в ДНК клетки-хозяина. На этой стадии вирус как единое структурное образование исчезает: его геном становится частью генетического аппарата клетки и даже реплицируется в составе клеточной ДНК во время деления клетки. Однако впоследствии, иногда через много лет, вирус может появиться вновь – запускается механизм синтеза вирусных белков, которые, объединяясь с вирусной ДНК, формируют новые вирионы.

У некоторых РНК-содержащих вирусов геном (РНК) может непосредственно выполнять роль мРНК. Однако эта особенность характерна только для вирусов с «+» нитью РНК (т.е. с РНК, имеющей положительную полярность). У вирусов с «» нитью РНК последняя должна сначала «переписаться» в «+» нить; только после этого начинается синтез вирусных белков и происходит репликация вируса.

Так называемые ретровирусы содержат в качестве генома РНК и имеют необычный способ транскрипции генетического материала: вместо транскрипции ДНК в РНК, как это происходит в клетке и характерно для ДНК-содержащих вирусов, их РНК транскрибируется в ДНК. Двухцепочечная ДНК вируса затем встраивается в хромосомную ДНК клетки. На матрице такой вирусной ДНК синтезируется новая вирусная РНК, которая, как и другие, определяет синтез вирусных белков.

Играют роль матриц . Новая цепь, синтезирующаяся на каждой из исходных цепей, идентична др. исходной цепи. Когда процесс завершается, образуются две идентичные двойные спирали , каждая из к-рых состоит из одной старой (исходной) и одной новой цепи (рис. 1). Таким образом от одного поколения к другому передается только одна из двух цепей, составляющих исходную молекулу ДНК ,-т. наз. полуконсервативный механизм репликации.

Репликация состоит из большого числа последоват. этапов, к-рые включают узнавание точки началу репликации, расплетание исходного дуплекса (спирали), удержание его цепей в изолированном друг от друга состоянии, инициацию синтеза на них новых дочерних цепей, их рост (элонгацию), закручивание цепей в спираль и терминацию (окончание) синтеза. Все эти этапы репликации, протекающие с высокой скоростью и исключит. точностью, обеспечивает комплекс, состоящий более чем из 20 ферментов и белков ,-т. наз. ДНК-репликазная система, или реплисома. Функцион. единица репликации-реплик он, представляющий собой сегмент (участок) хромосомы или внехромосомной ДНК , ограниченный точкой начала, в к-рой инициируется репликация, и точкой окончания, в к-рой репликация останавливается. Скорость репликации контролируется на стадии инициации. Однажды начавшись, репликация продолжается до тех пор, пока весь репликон не будет дуплицирован (удвоен). Частотд инициации определяется взаимод. спец. регуляторных белков с точкой начала репликации. Бактериальные хромосомы содержат один репликон: инициации в единств. точке начала репликации ведет к репликации всего генома . В каждом клеточном цикле репликация инициируется только один раз, Плазмиды и вирусы , являющиеся автономными генетич. элементами, представляют собой отдельные репликоны, способные к многократной инициации в клетке-хозяине. Эукариотич. хромосомы (хромосомы всех организмов , за исключением бактерий и синезеленых водорослей) содержат большое число репликонов, каждый из к-рых также однократно инициируется за один клеточный цикл .

Рис. 1. Схема полуконсервативного механизма репликации: А, Т, G и С-остатки пуриновых и пиримидиновых оснований (соотв. аденина , тимина , гуанина и цитозина); 1 -исходная цепь ДНК ; 2-новая цепь ДНК .

Начиная с точки инициации, репликация осуществляется в ограни-ченной зоне, перемещающейся вдоль исходной спирали ДНК . Эта активная зона репликации (т. наз. репликац. вилка) может двигаться в обоих направлениях. При однонаправленной репликации вдоль ДНК движется одна репликац. вилка. При двунаправленной репликации от точки инициации в противоположных направлениях расходятся две репликац. вилки; скорости их движения могут различаться. При репликации ДНК бактерии и млекопитающих скорость роста дочерней цепи составляет соотв. 500 и 50 нуклеотидов в 1 с; у растений эта величина не превышает 20 нуклеотидов в 1 с. Движение двух вилок в противоположных направлениях создает петлю, к-рая имеет вид "пузыря" или "глаза". Продолжающаяся репликация расширяет "глаз" до тех пор, пока он не включит в себя весь репликон.

В ходе репликации рост цепи осуществляется благодаря взаимод. дезоксирибонуклеозидтрифосфата с 3"-ОН концевым ну-клеотидом уже построенной части ДНК ; при этом отщепляется пирофосфат и образуется фосфодиэфирная связь. Рост полинуклеотидной цепи (рис. 2) идет только с ее З"-конца, т. е. в направлении 5" : 3" (см. Нуклеиновые кисло-ты). Фермент , катализирующий эту р-цию,-ДНК-полиме-раза (см. Полидезоксирибонуклеотид-синтетазы)-не способен начать матричный синтез на одноцепочечной ДНК , если нет хотя бы олигонуклеотидного биспирального участка (т. наз. затравочного олигонуклеотида) комплементарного матрице ; затравочным олигонуклеотидом во мн. случаях является не ДНК , а РНК .

Рис. 2. Направление роста дезоксирибонуклеотидных цепей при репликации; сплош ные линии - исходная ДНК , пунктирные - новые цепи ДНК (стрелки показывают на правлениеих роста); 1-репликац. вилка.

Энергия, затрачиваемая на образование каждой новой фосфодиэфирной связи в цепи ДНК , обеспечивается расщеплением фосфатной связи между a - и b -фосфатными группами нуклеозидтрифосфата.

ДНК-полимераза имеет один центр связывания нуклеозидтрифосфата, общий для всех четырех нуклеотидов . Выбор из среды нуклеотида , основание к-рого комплементарно очередному основанию матрицы , протекает без ошибок, благодаря определяющему влиянию ДНК-матрицы (исходной цепи ДНК). При нек-рых мутационных повреждениях структуры ДНК-полимеразы в ряде случаев происходит включение некомплементарных нуклеотидов .

В процессе репликации формальной ДНК на короткое время с вероятностью 10 -4 -10 -5 возникают редкие таутомерные формы всех 4 азотистых оснований нуклеотидов , к-рые образуют неправильные пары . Высокая точность репликации (вероятность ошибок не превышает 10 -9) обусловлена наличием механизмов, осуществляющих коррекцию (репарацию).

Репликац. вилка асимметрична. Из двух синтезируемых дочерних цепей ДНК одна строится непрерывно, а другая-с перерывами. Первую наз. ведущей, или лидирующей, цепью, а вторую-отстающей. Синтез второй цепи идет медленнее; хотя в целом эта цепь строится в направлении 3" : 5", каждый из ее фрагментов в отдельности наращивается в направлении 5" : 3" (рис. 3). Благодаря такому прерывистому механизму синтеза, репликация обеих антипараллельных цепей осуществляется с участием одного фермента-ДНК-полимеразы, катализирующего наращивание нуклеотидной цепи только в направлении 5" : 3".

Рис. 3. Схема механизма роста цепей ДНК при репликации: А-ведущая цепь, Б-отстающая цепь, В-фрагмент Оказаки.

В качестве затравок для синтеза фрагментов отстающей цепи служат короткие отрезки РНК , комплементарные матричной цепи ДНК . Эти РНК-затравки (праймеры), состоящие примерно из 10 нуклеотидов , с определенными интервалами синтезируются на матрице отстающей цепи из рибонуклеозидтрифосфатов в направлении 5" : 3" с помощью фермента РНК-праймазы. РНК-праймеры затем наращиваются дезоксинуклеотидами с 3"-конца ДНК-поли-меразой, к-рая продолжает наращивание до тех пор, пока строящаяся цепь не достигает РНК-затравки, присоединенной к 5"-концу предыдущего фрагмента. Образующиеся таким образом фрагменты (т. наз. фрагменты Оказаки) отстающей цепи насчитывают у бактерий 1000-2000 дез-оксирибонуклеотидных остатков; в животных клетках их длина не превышает 200 нуклеотидов .

Чтобы обеспечить образование непрерывной цепи ДНК из многих таких фрагментов, в действие вступает особая система репарации ДНК , удаляющая РНК-затравку и заменяющая ее на ДНК . У бактерий РНК-затравка удаляется нуклеотид за нуклеотидом благодаря 5" : 3"-экзонуклеазной активности ДНК-полимеразы. При этом каждый отщепленный рибонуклеотидный мономер замещается соответствующим дезоксирибонуклеотидом (в качестве затравки используется З"-конец синтезированного на старой цепи фрагмента). Завершает весь процесс фермент ДНК-лигаза, катализирующий образование фосфодиэфирной связи между группой З"-ОН нового фрагмента ДНК и 5"-фосфатной группой предыдущего фрагмента. Образование этой связи требует затраты энергии, к-рая поставляется в ходе сопряженного гидролиза пирофосфатной связи кофермента-никотинамид-адениндинуклеотида (в бактериальных клетках) или АТФ (в животных клетках и у бактериофагов).

Раскручивание двойной спирали и пространств. разделение цепей осуществляется при помощи неск. спец. белков . Т. наз. геликазы расплетают короткие участки ДНК , находящиеся непосредственно перед репликац. вилкой. На разделение каждой пары оснований расходуется энергия гидролиза двух молекул АТФ до аденозиндифосфата и фосфата . К каждой из разделившихся цепей присоединяется неск. молекул ДНК-связывающих белков , к-рые препятствуют образованию комплементарных пар и обратному воссоединению цепей. Благодаря этому нуклеотидные последовательности цепей ДНК оказываются доступными для репликативной системы. Др. специфич. белки помогают праймазе получить доступ к матрице отстающей цепи. В результате праймаза связывается с ДНК и синтезирует РНК-затравки для фрагментов отстающей цепи. Для формирования новых спира-,лей не требуется ни затрат энергии, ни участия к.-л. "закручивающего" фермента .

В случае кольцевого репликона (напр., у плазмиды) описанный процесс наз. q -репликацией. Т.к. кольцевые молекулы ДНК закручены сами на себя (суперспирализо-ваны), при раскручивании двойной спирали в процессе репликации они должны непрерывно вращаться вокруг собств. оси. При этом возникает торсионное напряжение, к-рое устраняется путем разрыва одной из цепей. Затем оба конца сразу же вновь соединяются друг с другом. Эту ф-цию выполняет фермент ДНК-топоизомераза. Репликация в этом случае обычно происходит в двух направлениях, т.е. существуют две репликац. вилки (рис. 4). После завершения репликации появляются две двухцепочечные молекулы , к-рые сначала связаны друг с другом как звенья одной цепи. При их разделении одно из двух колец временно разрывается.

Рис. 4. Один из механизмов репликации плазмиды (начало репликации обозначено точками); направления движения репликац. вилки показаны стрелками, образующиеся новые цепи ДНК-пунктиром.

Основной функцией ДНК является ее способность к самоудвоению (репликации). Репликация - очень точный механизм, практически не допускающий ошибок. В самой ДНК (у некоторых вирусов - в РНК) закодирована информация о структуре ферментов, осуществляющих удвоение нуклеиновых кислот, синтез новых нуклеотидов - строительную базу репликации, исправление ошибок репликации, а также репарацию повреждений ДНК, вызванных разными факторами. Наконец, сама структура ДНК, а именно наличие двух цепей в ее составе, является условием, облегчающим процесс копирования, поскольку в таком случае каждая из цепочек может выполнять роль матрицы при синтезе новых молекул ДНК. Подобное предположение высказали Джеймс Уотсон и Фрэнсис Крик еще в 1953 г., и оно получило экспериментальное подтверждение. Такой механизм копирования ДНК, когда каждая из цепей выполняет функцию шаблона, а вновь синтезированные молекулы являются гибридными (состоят из одной старой и одной новой цепей), называется полуконсервативным .

Кроме полуконсервативной, были предложены еще две модели репликации: консервативная и дисперсивная . Особенности этих моделей репликации ДНК состоят в следующем. Согласно дисперсивной модели, родительская спираль ДНК при удвоении разрывается на каждом полуобороте путем множественной фрагментации, а синтез новых цепей происходит на фрагментах (рис. 1.9). По консервативной модели раскручивания спирали ДНК не происходит вовсе, и она служит матрицей для двух новых цепей, в результате чего родительская спираль целиком состоит из старого, а дочерняя - из нового материала. Доказательство реальности полуконсервативного механизма репликации ДНК предоставили Месельсон и Сталь в 1958 г. в экспериментах с ультрацентрифугированием меченой бактериальной ДНК.

Суть этих экспериментов состояла в следующем: ДНК E.coli метили радиоактивным изотопом 15 N, а затем давали осуществиться одному раунду репликации ДНК, выращивая клетки в течение ~ 50 мин на питательной среде, содержащей нормальный изотоп азота - 14 N. Выделенную из клеток ДНК подвергали ультрацентрифугированию в градиенте плотности хлористого цезия. При таком центрифугировании молекулы CsCl создают в пробирке градиент плотности, и молекулы других веществ распределяются в этом градиенте в соответствии со своей плотностью. ДНК E.coli, выращенных на среде, содержащей 15 N, имеет плотность 1,724 г/см 3 , тогда как ДНК клеток, выращенных на обычной среде с изотопом 14 N, характеризуется плотностью 1,710 г/см 3 . Таким образом, смесь этих двух типов ДНК легко разделяется при центрифугировании по плотности. Локализацию ДНК в пробирке с градиентом CsCl можно определить по поглощению ультрафиолетовых лучей (ДНК поглощает излучение с длиной волны 260 нм). Таким образом, ДНК в пробирке выявляется в виде «полос» - «легкая» у верхнего края пробирки, «тяжелая» - ближе ко дну. В данном эксперименте в пробирке с градиентом хлористого цезия образовалась всего одна, средняя по «тяжести» полоса, положение которой соответствовало гибридной ДНК, включающей оба изотопа азота - 15 N и 14 N. Это обстоятельство исключало возможность реализации только одной модели репликации ДНК -консервативной. Для выбора между оставшимися двумя моделями репликации Месельсон и Сталь позволили бактериям, ДНК которых содержала оба изотопа, совершить еще одно деление на среде с 14 N. Затем их ДНК снова подвергли ультрацентрифугированию. На этот раз в пробирке сформировалось две полосы ДНК - «легкая» и средняя по «тяжести», что подтверждает справедливость полуконсервативного механизма репликации ДНК.

Итак, все изученные к настоящему времени способы репликации нуклеиновых кислот сводятся к полуконсервативному механизму, согласно которому после каждого раунда репликации одна нить в каждой из двух дочерних молекул является родительской, т. е. консервативной, а другая - синтезированной заново. Репликация одно- и двухцепочечных нуклеиновых кислот, представляющих геномы разных организмов, осуществляется с соблюдением определенных закономерностей при реализации разных механизмов, которые рассмотрены ниже. Общим для всех этих процессов является: 1) участие сложного комплекса ферментов, которые осуществляют репликацию; 2) наличие трех основных стадий процесса - инициации, элонгации и терминации; 3) соблюдение принципа комплементарности при построении новых цепей, при котором шаблоном (матрицей) служит родительская цепочка; 4) высокая точность процесса; 5) возможность исправления ошибок репликации в ходе корректорской правки .

Репликация двухцепочечных ДНК . Двухцепочечные ДНК формируют геномы всех клеточных организмов - и прокариот и эукариот. Наилучшим образом механизм репликации ДНК изучен по отношению к прокариотическим клеткам, в частности бактерий E.coli. В экспериментах с прокариотами показано, что в условиях, ограничивающих синтез белка, репликация ДНК не происходит, из чего можно сделать вывод, что этот процесс нуждается в участии белков. В настоящее время показано, что в процессе репликации ДНК участвуют продукты более чем 10 генов. Это, в первую очередь, ДНК-полимеразы , а также топоизомеразы , геликазы и лигазы . Появляется все больше данных в пользу участия в процессе репликации ДНК высокоорганизованного мультиферментного комплекса -реплисомы , включающей праймосомо-праймазный комплекс, геликазы, Pol III-холофермент и гиразы.

ДНК-полимеразы - это ключевые ферменты репликативного процесса, которые собственно и осуществляют наращивание полинуклеотидных цепей, используя принцип комплементарности. Наиболее полно изучены ДНК-полимеразы кишечной палочки. В клетках этих бактерий обнаружено три различных типа ДНК-полимераз (Pol-I, Pol-II и Pol-III), которые различаются в первую очередь скоростью катализа и нуклеазной активностью. ДНК-полимераза I (Pol-I) представляет собой одиночный полипептид, содержащий порядка 1000 аминокислотных остатков. В клетке E.coli насчитывается около 400 молекул этого фермента. Pol-I обладает следующими активностями: полимеразной - присоединение комплементарных матричной цепи дезоксинуклеотидов к свободной 3’-ОН-группе праймера в направлении от 5’- к 3’-концу (5’→3’) строящейся молекулы ДНК; экзонуклеазной - гидролиз фосфодиэфирных связей (отщепление нуклеотидов) в одной цепи ДНК или на неспаренном конце дуплексной ДНК, начиная с 3ў-конца цепи (3’→ 5’) и 5’-конца цепи (5’→3’). Экзонуклеазные активности играют очень большую роль в репликации и репарации хромосомной ДНК E.coli. 3’→5’-экзонуклеазная активность обеспечивает контроль за присоединением каждого нуклеотида и удаление ошибочных нуклеотидов с растущего конца цепи (корректорская правка), а 5’→3’-экзонуклеазная активность используется для удаления димеров пиримидинов и рибонуклеотидов фрагментов Оказаки .



ДНК-полимераза II (Pol-II) присутствует в клетках кишечной палочки в значительно меньшем числе копий и осуществляет полимеразную активность гораздо медленнее, чем Pol-I (составляет только 5% активности ДНК-полимеразы I). В отличие от Pol-I этот фермент не обладает 5’→3’-экзонуклеазной активностью. Роль этой полимеразы в репликации до конца не выяснена. Считается, что этот фермент не обязателен для репликации ДНК, но может заменять отдельные функции Pol-I при ее повреждении.

ДНК-полимераза III (Pol-III) - основной фермент, ответственный за репликацию хромосомальной ДНК E.coli. В каждой клетке содержится только 10-20 молекул этого фермента, но работает он примерно в 60 раз быстрее ДНК-полимеразы I. Кроме того, Pol-III обладает повышенным сродством к матрице и обеспечивает более высокую эффективность копирования. Для данного фермента, так же как и для Pol-II, не присуща 5’→3’-экзонуклеазная активность. Поэтому для репликации отстающей цепи необходимо участие Pol-I, чтобы произошло удаление РНК-праймеров на 5’-конце фрагментов Оказаки.

В эукариотических клетках выявлено большее количество ДНК-полимераз, но их функции изучены хуже.

Функция топоизомераз сводится к разрешению механических и топологических проблем в процессе раскручивания двойной спирали в репликативной вилке. Эти ферменты изменяют степень сверхспирализации и приводят к образованию «шарнира», который создает условия для непрерывного движения репликативной вилки. В различных организмах идентифицированы топоизомеразы двух основных типов: топоизомеразы типа I надрезают одну из двух цепей, в результате чего концевой участок двойной спирали может повернуться вокруг интактной цепи, и затем воссоединяют концы разрезанной цепи. Топоизомеразы типа II вносят временные разрывы в обе комплементарные цепи, изменяют степень сверхспирализации, а затем соединяют разорванные концы.

Геликазы осуществляют образование и продвижение вдоль спирали ДНК репликативной вилки - участка молекулы с расплетенными цепями. Эти ферменты используют для расплетения цепей энергию, высвобождающуюся при гидролизе АТР. Для обеспечения более высокой скорости раскручивания несколько геликаз действуют в комплексе с белками второго типа, которые связываются с одноцепочечными участками молекулы и тем самым стабилизируют расплетенный дуплекс .

Наконец, ДНК-лигазы катализируют процессы воссоединения фрагментов цепей ДНК, участвуя в образовании ковалентных связей (фосфодиэфирных мостиков) между 5’-P- и 3’-ОН-группами соседних дезоксирибонуклеотидов. Эти ферменты также используют энергию макроэргических связей, образующуюся при гидролизе АТР или GTP.

Механизм репликации двухцепочечной ДНК лучше всего исследован для бактерий E.coli и будет рассмотрен на данном примере. Инициация репликации Д НК. Процесс репликации ДНК кишечной палочки начинается в строго определенной точке, которая называется origin (ori), или точкой начала репликации, и расположена на 85 мин. генетической карты хромосомы этих бактерий. В ori репликации на ДНК действуют ферменты (топоизомеразы, геликазы), обусловливающие формирование репликативной вилки, в которой собственно и происходит копирование цепей. Для репликации необходимо наличие: ДНК-матрицы в виде одноцепочечного участка ДНК, смеси дезоксирибонуклеозидтрифосфатов, реплисомы (ансамбля ферментов, принимающих участие в репликации) и 3’-ОН–группы нуклеиновой кислоты -затравки, к которой ДНК-полимераза должна присоединять следующий нуклеотид. Дело в том, что ни одна из ДНК-полимераз не может начинать процесс полимеризации нуклеотидов de novo. Эту функцию выполняют РНК-полимеразы, которые узнают ori репликации в репликативной вилке и синтезируют коротенькие (10-60 рибонуклеотидов) последовательности - РНК-затравки (праймеры). При этом синтез затравок осуществляется в направлении от 5’- к 3’-концу, и в результате образуется свободный 3’-ОН-конец, который может использовать ДНК-полимераза для продолжения процесса полимеризации цепей на стадии элонгации репликации (рис. 1.10).

Элонгация репликации ДНК. Синтез новых цепей ДНК осуществляется с соблюдением принципа комплементарности: каждый подбираемый в растущую цепь нуклеотид должен быть комплементарен соответствующему (расположенному напротив) нуклеотиду в исходной (матричной) цепи.

Поскольку все ДНК-полимеразы осуществляют процесс полимеризации нуклеотидов только в одном направлении (5’→3’), а репликативная вилка движется вдоль ДНК в обоих направлениях, непрерывно синтезироваться в каждом из направлений может лишь одна нить, которую называют лидирующей . Вторая (противоположная) нить синтезируется короткими фрагментами (фрагменты Оказаки) и называется отстающей (рис. 1.10). Фрагменты Оказаки у прокариот содержат порядка 1000 нуклеотидов, а у эукариот - 100-200 нуклеотидов.

Кроме полимеризации цепей, которую осуществляет в основном ДНК-полимераза III, в процессе репликации ДНК происходят следующие события:

Вырезание РНК-затравок из лидирующей цепи и из каждого фрагмента Оказаки. Эту функцию выполняет Pol-I с помощью своей 5’→3’-экзонуклеазной активности;

Заполнение “брешей”, оставшихся после вырезания РНК-затравок. Эту работу также осуществляет ДНК-полимераза I, используя свободную 3’-ОН–группу соседнего фрагмента Оказаки;

Соединение фрагментов ДНК в отстающей цепи с помощью фермента ДНК-лигазы: когда растущий 3’-гидроксильный конец каждого фрагмента Оказаки доходит до 5’-дезоксинуклеотидного конца соседнего фрагмента, вступает в действие ДНК-лигаза и образуется непрерывная отстающая цепь;

Исправление ошибок репликации - корректорская правка. Этот механизм характерен как для Pol-I, так и для Pol-III и основывается на их 3’→5’-экзонуклеазной активности. Известно, что ДНК-полимераза проверяет комплементарность подбираемого нуклеотида, контролируя размер новой предполагаемой пары нуклеотидов в своем активном центре, и ее полимеразная активность включается лишь тогда, когда эта комплементарность установлена. С другой стороны, каждый вновь встроенный нуклеотид также проверяется на соответствие своей паре в активном центре фермента. Если размер образовавшейся пары нуклеотидов не соответствует истинному (когда основания противоположных нуклеотидов не комплементарны друг другу), с помощью своей 3’→5’-экзонуклеазной активности фермент вырезает некомплементарный нуклеотид и ищет ему замену. Дополнительным механизмом, уменьшающим ошибки репликации, служит репарация ДНК. В результате частота ошибочного включения нуклеотидов в образующуюся при репликации цепь ДНК крайне низка (10 -8 -10 -10).

Терминaция репликации. При двунаправленной репликации кольцевого генома (как у кишечной палочки) репликативные вилки встречаются на расстоянии 180° от точки репликации, и в этом месте репликация завершается. Кольцевые ДНК в месте встречи соединяются лигазой, при этом они оказываются попарно сцепленными, и в дальнейшем происходит их разделение на отдельные геномы с помощью топоизомеразы типа II.

Скорость репликации ДНК у бактерий E.coli составляет примерно 1500 пар нуклеотидов в секунду. Таким образом, полный геном кишечной палочки (4*10 6 п. н.) реплицируется примерно за 40 мин. Однако клетки E.coli делятся быстрее - каждые 20 мин, и это означает, что при прежней скорости копирования увеличивается частота актов инициации в той же самой точке начала репликации. Т. е. еще до завершения первого раунда репликации генома в сайте ori инициируется второй раунд репликации. Скорость движения репликативной вилки в эукариотических клетках значительно меньше (10-100 п.н. в секунду), но завершение репликации в разумное время обеспечивается одновременной инициацией во множестве точек. В результате хромосома дрозофилы, например, содержащая 6,5*10 7 п.н., реплицируется за несколько минут.

В целом закономерности репликации, выявленные для прокариот, характерны и для большинства эукариотических геномов. Отличия состоят, в первую очередь, в наличии у эукариот множества сайтов инициации репликации на каждой хромосоме, иных, чем у прокариот, механизмах исправления ошибок репликации, а также в ферментативном оснащении процесса репликации. Схематическое изображение процессов репликации циклических, формирующих геномы прокариот и плазмид, и линейных (эукариотических) геномов представлены на рис. 1.11.

В линейной ДНК раскручивание цепей осуществляется путем вращения одной цепи вокруг другой. В кольцевой ДНК раскручивание и репликация ведут к образованию структуры, напоминающей кольцо с внутренней петлей. Ее называют тэта-петлей , поскольку по форме она похожа на греческую букву Q. Такие петли можно наблюдать на радиоавтографах реплицирующихся бактериальных ДНК, что впервые осуществил Кэрнс для ДНК E.coli. Приведенный механизм двунаправленной репликации ДНК является наиболее распространенным, но не единственным. ДНК фагов Р22, 186, Р2, а также фагов Т4 и l на поздних стадиях литического цикла реплицируется по однонаправленному механизму (тип катящегося кольца ). В этом случае двухцепочечная кольцевая ДНК надрезается специфическим ферментом в уникальном сайте одной цепи (точке начала катящегося кольца). Образовавшийся в результате надреза 5’-конец цепи связывается с ферментом, осуществившим надрез. Синтез ДНК начинается с вытеснения 5’-конца, связанного с ферментом, в раствор, что позволяет ДНК-полимеразе присоединять нуклеотиды к 3’-ОН-концу. Происходит полуконсервативная репликация, в ходе которой 5’-конец разорванной цепи вытесняется в виде свободного хвоста и его длина все увеличивается, а матрицей служит интактная замкнутая цепь. Эту реплицирующуюся структуру (рис. 1.12) называют катящимся кольцом, так как разматывание свободной одиночной цепи сопровождается вращением двухцепочечной матрицы вокруг своей оси.

Если этот механизм используется для репликации двухцепочечной ДНК, то 5’-концевые хвосты служат матрицами для синтеза небольших фрагментов ДНК, которые сразу же сшиваются вместе под действием ДНК-лигазы. В результате растущие хвосты вскоре после своего образования приобретают двухцепочечную структуру. Элонгация хвостов приводит иногда к

тому, что их длина многократно превышает общую длину исходной кольцевой молекулы. Такой способ репликации использует, например, фаг l. При упаковке ДНК в капсиды в специальных участках, называемых cos-сайтами и отстоящих друг от друга на длину вирусного генома, образуются надрезы, в результате чего длинные дуплексы многократно повторенной фаговой ДНК расчленяются на фрагменты, соответствующие по размерам зрелой ДНК, обнаруживаемой в вирионах бактериофага l. Репликация по типу катящегося кольца характерна также для образования копии бактериальной хромосомы E.coli Hfr и фактора F + , передающихся при конъюгации в реципиентную клетку.

Репликация одноцепочечных ДНК . У фагов М13 или fХ174, чьи зрелые геномы представлены одиночными кольцевыми ДНК, репликация осуществляется по механизму катящегося кольца (рис. 1.12). Это происходит на поздних стадиях инфекционного процесса, после того, как

инфицирующая ДНК превращается в двухцепочечную кольцевую форму. В данном случае не осуществляется репликация 5’-концевых участков, в отличие от репликации геномов фага l (рис. 1.12, поз. 5), поэтому продуктом репликации являются длинные одиночные цепи ДНК, постоянно отделяющиеся от «катящегося рулона» Эти цепи надрезаются в каждой точке начала репликации и замыкаются с образованием зрелых кольцевых форм, упаковываемых в капсиды.

Репликация РНК. Образование РНК-содержащих вирусов происходит путем репликации их РНК, тогда как все клеточные РНК образуются в результате транскрипции ДНК. За исключением ретровирусов репликация РНК в основном повторяет процесс репликации ДНК. Как и при репликации ДНК, порядок расположения нуклеотидов определяется комплементарным копированием матрицы, в данном случае обязательно цепи РНК. Ферменты, осуществляющие этот процесс, называются РНК-зависимыми репликазами . РНК бактериальных вирусов R17 и MS2, а также полиовирусов и вируса Синдбис, инфицирующих животных, всегда обозначается знаком (+), поскольку последовательность их РНК-геномов идентична последовательности мРНК. Таким образом, геном инфицирующего вируса может служить в качестве мРНК и содержит информацию о синтезе некоторых, если не всех, вирусных белков. Специфическая репликаза, кодируемая геномом вируса и образующаяся вскоре после инфекции, связывается с одним или несколькими белками клетки-хозяина и инициирует процесс копирования (+)-цепи с ее 3’-конца с образованием полной (-)-цепи, ассоциированной с (+)-цепью-матрицей. Затем та же репликаза синтезирует множество копий (+)-цепи РНК, используя новосинтезированную (-)-цепь в качестве матрицы. Геномы некоторых вирусов (вирус везикулярного стоматита, гриппа) представлены одной или несколькими (-)-цепями. В этом случае они служат матрицами для синтеза (+)-цепей, которые играют роль мРНК и используются при синтезе дочерних (-)-цепей.

Отличительной особенностью репликации геномов ретровирусов является то, что после проникновения их РНК в клетку хозяина вирусный геном подвергается обратной транскрипции. При этом сначала образуется дуплекс РНК-ДНК, а затем - двухцепочечная ДНК. Фермент, катализирующий комплементарное копирование РНК с образованием ДНК, называется обратной траскриптазой (ревертазой ). Он содержится в ретровирусных частицах (вирионах) и активируется после попадания в клетку. Появляется все больше данных о том, что обратная транскрипция происходит в самых разных эукариотических клетках, а обратная транскриптаза играет важную роль в процессах перестройки генома. Репликация двухцепочечной формы ретровирусной ДНК не начинается до тех пор, пока она не встроится в клеточную ДНК. Механизм рекомбинационного встраивания пока полностью не установлен. После интеграции ретровирусная ДНК реплицируется как часть клеточной ДНК. РНК дочерних вирионов образуется в результате транскрипции интегрированных копий вирусной ДНК.