Что такое компьютерная сеть научные статьи. Щербакова С.М., Крупина Т.А. Основные понятия для пользователей интернета по современным объединенным компьютерным сетям. Разработчики технологий компьютерных сетей

ОСНОВНЫЕ ПОНЯТИЯ ДЛЯ ПОЛЬЗОВАТЕЛЕЙ ИНТЕРНЕТА ПО СОВРЕМЕННЫМ ОБЪЕДИНЕННЫМ КОМПЬЮТЕРНЫМ СЕТЯМ

Щербакова Светлана Михайловна 1 , Крупина Татьяна Александровна 1
1 Московский педагогический государственный университет, магистрант кафедры прикладной математики и ИТ


Аннотация
Данная статья написана по результатам магистерского исследования. Она посвящена обзору основных понятий современных компьютерных сетей. Так, глобальные сети сегодня объединяют интранет и экстранет.

BASIC CONCEPTS FOR INTERNET USERS ON CONTEMPORARY UNITED COMPUTER NETWORKS

Shcherbakova Svetlana Mikhailovna 1 , Krupina Tatiana Aleksandrovna 1
1 Moscow State Pedagogical University, Graduate of the Department of Applied Mathematics and IT


Abstract
This article is written as a result of master"s studies. It provides an overview of the basic concepts of modern computer networks. Thus, the global network now bring together intranets and extranets.

Библиографическая ссылка на статью:
Щербакова С.М., Крупина Т.А. Основные понятия для пользователей интернета по современным объединенным компьютерным сетям // Современная техника и технологии. 2016. № 10 [Электронный ресурс]..02.2019).

В связи с ежегодным увеличением услуг оказываемых населению через компьютеры и глобальную компьютерную сеть Интернет (для работы, обучения, отдыха) все чаще возникает необходимость общения специалистов в области сетей с обычными пользователями, причем с использованием некоторых сетевых терминов. Поэтому, пришла пора определенного ликбеза по компьютерным сетям для обычных более или менее активных пользователей сети Интернет.

Компьютерная сеть представляет собой взаимосвязанную группу компьютеров в одной комнате или на различных континентах, осуществляющую обмен информацией по специальным проводным или беспроводным каналам связи. По масштабу компьютерные сети могут быть классифицированы так: персональные, локальные, корпоративные, городские и глобальные.

Сетевые администраторы, в отличии от пользователя, имеют доступ для настройки сети, устранения проблем, связанные с достижением желаемого уровня работоспособности и производительности.

По способу подключения компьютеров и других сетевых устройств компьютерные сети могут быть классифицированы в соответствии с реализованной при создании сетей аппаратной технологией, которая используется для подключения отдельных сетевых устройств, например, опто-волоконные, на основе витой пары (Ethernet), беспроводные (Wireless LAN), на основе телефонных линий. Кроме компьютеров в сети присутствует такие сетевые устройства, как: концентраторы, коммутаторы, мосты, маршрутизаторы и шлюзы. Беспроводная технология Wireless LAN для подключения устройств в сети используют радиочастоты.

По функциональной связи между компьютерами, сети могут быть классифицированы как клиент-серверные (где имеется выделенный главный компьютер и подчиненные) и одноранговая (все компьютеры по рангу одинаковы). По топологии компьютерные сети могут быть классифицированы в соответствии с логическим соединением всех сетевых устройств, например, шина, звезда, кольцо, дерево, иерархические топологии и т.д. Топология сети означает способ, в котором интеллектуальные устройства в сети видят логические связи друг с другом. То есть, сетевая топология не зависит от “физического” расположения сети. Даже если сетевые компьютеры физически находятся в линейном расположении, если они соединены через концентратор, сеть имеет топологию звезды, а не топологию шины. В связи с этим логическая топология сети не обязательно совпадает с физическим размещением.

Правила для передачи информации между компьютерами в сети называют протоколом. Часто используемые протоколы это TCP и IP.

Рассмотрим основные виды сетей. Персональная сеть (PAN) представляет собой компьютерную сеть, между компьютерами и устройствами принадлежащих одному человеку. Некоторые примеры устройств, которые могут быть использованы в персональной сети: принтеры, факсы, телефоны, карманные компьютеры или сканеры. PAN обычно находится дома в пределах приблизительно 5-12 метров.

Локальная сеть (LAN) охватывает небольшую территорию, это может быть отдельное помещение, дом, офис или бизнес-центр. Современные локальные сети основаны на технологии Ethernet. Определяющие характеристики локальных сетей, в отличие от глобальных, это их более высокие скорости передачи данных, меньшие размеры, а также отсутствие необходимости в аренде линий связи. Ethernet или другие технологии IEEE 802.3 локальной сети работают на скоростях до 10 Гбит / с. Это скорость передачи данных. Однако IEEE имеет также стандарты до 100 Гбит / с.

Глобальная сеть (WAN) представляет собой сеть передачи данных, которая охватывает сравнительно широкую географическую область (т.е. целые города и страны), и часто использует для передачи данных линии связи от телефонных компаний. Технологии WAN обычно действуют на трех нижних уровнях эталонной модели OSI: физический уровень, канальный уровень и сетевой уровень.

Глобальная сеть (GAN). Технические характеристики глобальной сети (GAN) находятся в стадии разработки несколькими группами, и не существует единого определения. В целом, GAN представляет собой модель для поддержки мобильной связи по произвольным числом беспроводных локальных сетей, зон покрытия спутников и т.д. Основной задачей в области мобильной связи является “переключение” пользовательских сообщений из одной локальной зоны в другую.

Две или более сетей или сегментов сети, подключенные с помощью устройств, которые работают на уровне 3 (слой ‘сеть’) от OSI базовой эталонной модели, такие как маршрутизатор. Любая взаимосвязь между государственными, частными, коммерческими, промышленными или правительственными сетями может быть названо, как объединенная сеть.

В современной практике взаимосвязанных сетей есть, по крайней мере, три варианта сетей, в зависимости от того, кто управляет, и кто участвует в них. Это: 1. Интранет 2.Экстранет 3. Интернет. Интранет и экстранет, как могут, так и не могут иметь подключение к Интернету. При подключении к сети Интернет, интранет или экстранет, как правило, защищены от несанкционированного доступа из Интернета без специального разрешения. Интернет не считается частью интранет или экстранет, хотя он может служить в качестве портала для доступа к частям экстранет.

Интранет представляет собой набор взаимосвязанных сетей, с использованием Интернет – протокола и использует инструменты, такие как Веб-браузеры и FTP-инструменты, которые находятся под контролем администратора. Администратор закрывает и открывает интранет от остальной части мира, и дает доступ только определенным пользователям. Чаще всего, интранет является внутренней сетью компании или другого предприятия. Большой интранет, как правило, имеет свой ​​собственный веб – сервер, чтобы предоставить пользователям больше информации.

Экстранет – это сеть, которая ограничена в рамках одной организации или юридического лица, но также имеет ограниченные связи с сетями одного или более доверенных организаций или юридическими лицами (например, клиентам компании может быть предоставлен доступ, к некоторой части своей сети интранет, создавая, таким образом, экстранет, в то же время клиенты не могут считаться «своими людьми» с точки зрения безопасности). С технической точки зрения экстранет также может быть классифицирован как корпаративный тип сети, хотя, по определению, экстранет не может состоять из одной локальной сети; она должна иметь по крайней мере, одно соединение с внешней сетью.

Интернет состоит из взаимосвязи по всему миру правительственных, научных, общественных и частных сетей. Участники в Интернете, или их поставщики услуг, используют IP-адреса, полученные из адресных регистраторов.


Библиографический список
  1. Олифер В. Г., Олифер Н. А. Компьютерные сети. Учебник для вузов. 4-е изд. – СПб.: Питер, 2010. – 944с.
  2. Abdulgalimov G.L. Progress of information society in Russia and deficit of staff potential. Life Science Journal. 2014. Т. 11. № 8. С. 494-496.
  3. Абдулгалимов Г.Л., Якушева Н.М. Современные компьютерные сети . Уч. пособие. – М.: МГГУ им. М. А. Шолохова, 2011. -120с.
  4. ФГОС 222000 Инноватика (квалификация (степень) «магистр»). Сайт Минобрнауки России http://минобрнауки.рф/документы/926 . Дата доступа 3.10.2016.
  5. Абдулгалимов Г.Л. Проблемы и решения внедрения ФГОС. Педагогика. 2013. № 10. С. 57-61.
  6. Абдулгалимов Г.Л. Информационные технологии для учителя предметника . Уч. пособие. -М.: МГГУ им. М. А. Шолохова, 2008. -244с.
  7. Таненбаум Э., Уэзеролл Д. Компьютерные сети. 5-е изд. -СПб.: Питер, 2012. – 960 с.

Компьютерная сеть - это совокупность компьютеров и различных устройств, обеспечивающих информационный обмен между компьютерами в сети без использования каких-либо промежуточных носителей информации.

Создание компьютерных сетей вызвано практической потребностью пользователей удаленных друг от друга компьютеров в одной и той же информации.

Сети предоставляют пользователям возможность не только быстрого обмена информацией, но и совместной работы на принтерах и других периферийных устройствах, и даже одновременной обработки документов.

Все многообразие компьютерных сетей можно классифицировать по группе признаков:

  • Территориальная распространенность;
  • Ведомственная принадлежность;
  • Скорость передачи информации;
  • Тип среды передачи.

По территориальной распространенности сети могут быть локальными, глобальными, и региональными.

По принадлежности различают ведомственные и государственные сети.

Ведомственные принадлежат одной организации и располагаются на ее территории.

По скорости передачи информации компьютерные сети делятся на низко-, средне- и высокоскоростные.

По типу среды передачи разделяются на сети коаксиальные, на витой паре, оптоволоконные, с передачей информации по радиоканалам, в инфракрасном диапазоне.

Локальные компьютерные сети

Локальная сеть объединяет компьютеры, установленные в одном помещении (например, школьный компьютерный класс, состоящий из 8-12 компьютеров) или в одном здании (например, в здании школы могут быть объединены в локальную сеть несколько десятков компьютеров, установленных в различных предметных кабинетах).

В небольших локальных сетях все компьютеры обычно равноправны, то есть пользователи самостоятельно решают, какие ресурсы своего компьютера (диски, каталоги, файлы) сделать общедоступными по сети. Такие сети называются одноранговыми.

Если к локальной сети подключено более десяти компьютеров, то одноранговая сеть может оказаться недостаточно производительной.

Для увеличения производительности, а также в целях обеспечения большей надежности при хранении информации в сети некоторые компьютеры специально выделяются для хранения файлов или программ-приложений. Такие компьютеры называются серверами, а локальная сеть - сетью на основе серверов.

Каждый компьютер, подключенный к локальной сети, должен иметь специальную плату (сетевой адаптер). Между собой компьютеры (сетевые адаптеры) соединяются с помощью кабелей.

Топология сети

Общая схема соединения компьютеров в локальные сети называется топологией сети . Топологии сети могут быть различными.

Сети Ethernet могут иметь топологию «шина» и «звезда». В первом случае все компьютеры подключены к одному общему кабелю (шине), во втором - имеется специальное центральное устройство (хаб), от которого идут «лучи» к каждому компьютеру, то есть каждый компьютер подключен к своему кабелю.

Структура типа «шина» проще и экономичнее, так как для нее не требуется дополнительное устройство и расходуется меньше кабеля. Но она очень чувствительна к неисправностям кабельной системы. Если кабель поврежден хотя бы в одном месте, то возникают проблемы для всей сети. Место неисправности трудно обнаружить.

Топология «шина»

Топология «звезда»

В этом смысле «звезда» более устойчива. Поврежденный кабель - проблема для одного конкретного компьютера, на работе сети в целом это не сказывается. Не требуется усилий по локализации неисправности.

Топология «кольцо»

В сети, имеющей структуру типа «кольцо» передается между станциями по кольцу с приемом в каждом сетевом контроллере. Прием производится через буферные накопители, выполненные на базе оперативных запоминающих устройств, поэтому при выходе их строя одного сетевого контроллера может нарушиться работа всего кольца. Достоинство кольцевой структуры - простота реализации устройств, а недостаток - низкая надежность.

Региональные компьютерные сети

Локальные сети не позволяют обеспечить совместный доступ к информации пользователям, находящимся, например, в различных частях города. На помощь приходят региональные сети, объединяющие компьютеры в пределах одного региона (города, страны, континента).

Корпоративные компьютерные сети

Многие организации, заинтересованные в защите информации от несанкционированного доступа (например, военные, банковские и прочее), создают собственные, так называемые корпоративные сети.

Корпоративная сеть может объединять тысячи и десятки тысяч компьютеров, размещенных в различных странах и городах (в качестве примера можно привести сеть корпорации Microsoft, MSN).

Глобальная компьютерная сеть Интернет

В настоящее время на десятках миллионов компьютеров, подключенных к Интернет, хранится громадный объем информации (сотни миллионов файлов, документов и так далее) и сотни миллионов людей пользуются информационными услугами глобальной сети.

Интернет - это глобальная компьютерная сеть, объединяющая многие локальные, региональные и корпоративные сети и включающая в себя десятки миллионов компьютеров.

В каждой локальной или корпоративной сети обычно имеется, по крайней мере, один компьютер, который имеет постоянное подключение к Интернету с помощью линии связи с высокой пропускной способностью (сервер ).

Надежность функционирования глобальной сети обеспечивается избыточностью линий связи: как правило, серверы имеют более двух линий связи, соединяющих их с Интернетом.

Основу, «каркас» Интернета составляют более ста миллионов серверов, постоянно подключенных к сети. К серверам Интернета могут подключаться с помощью локальных сетей или коммутируемых телефонных линий сотни миллионов пользователей сети.

Вот пример одного из глобального центра

Крупный Google центр для хранения Интернет данных

Введение
1. Локальные и глобальные сети. Назначение сетей
2. Топология локальной компьютерной сети
3. Основные компоненты компьютерной сети
4. Программные компоненты компьютерной сети
5. Отказоустойчивость и надежность хранения данных в локальных сетях
Заключение
Список использованных источников

Введение

Создание компьютерный сетей вызвано потребностью совместного использования информации на удаленных друг от друга компьютерах.

Основное назначение компьютерных сетей – совместное использование ресурсов и осуществление связи как внутри одной организации, так и за ее пределами.

Ресурсы – это данные, приложения, периферийные устройства, такие, как cd-rom, принтер.

Все сети делятся на три типа:

  • одноранговые сети;
  • сети на основе сервера;
  • комбинированные сети.

Локальной сетью обычно называют несколько независимых компьютеров, которые соединены между собой какими-то проводами. Если говорить более грамотным техническим языком, - снабжены коммуникационным оборудованием и подключены к единому каналу передачи данных. Если посмотреть на локальную сеть со стороны - это вечно спотыкающиеся о провода люди, крики пользователей «у всех есть сеть?», лазерный принтер, давно перекрывший свой месячный ресурс печати и страдающий хронической бумажной недостаточностью.

Согласно определению сети ЭВМ международной организации по стандартизации, сеть ЭВМ - это последовательная бит-ориентированная передача информации между связанными друг с другом независимыми устройствами. Эта сеть обычно находится в частном ведении пользователя и занимает некоторую ограниченную территорию.

Понятие «локальная вычислительная сеть» - ЛВС (LAN - Local Area Network) больше относится к географически ограниченным понятиям. Компьютеры такой сети обычно расположены на небольшом расстоянии друг от друга (порядка 1 километра). Это обеспечивает «локальность» сети. Типичная локальная сеть - это сеть масштаба офиса. Большие расстояния подразумевают уже другие способы обмена данными и другие виды коммуникационного оборудования, отличные от применяемых в локальных сетях. Такие сети принято называть «глобальными».

1. Локальные и глобальные сети. Назначение сетей

компьютер локальный вычислительный сеть

Создание компьютерных сетей вызвано практической потребностью пользователей, удаленных друг от друга компьютеров, в одной и той же информации. Сети предоставляют пользователям возможность не только быстрого обмена информацией, но и совместной работы на принтерах и других периферийных устройствах, а также одновременной обработки документов.

Локальная сеть объединяет компьютеры, установленные в одном помещении или в одном здании.

В небольших локальных сетях обычно все компьютеры равноправны, и такие сети называются одноранговыми. Для увеличения производительности, а также в целях обеспечения большей надежности при хранении информации в сети некоторые компьютеры специально выделяются для хранения файлов и программ-приложений. Такие компьютеры называются серверами, а сама сеть - сетью на основе серверов.

Для подключения к сети компьютер должен иметь специальную плату (сетевой адаптер). Соединяются компьютеры в сети с помощью кабелей.

Региональные сети позволяют обеспечить совместный доступ к информации в пределах одного региона (города, страны и т. д.).

Корпоративные сети создаются организациями, заинтересованными в защите информации от несанкционированного доступа, такие сети могут объединять тысячи компьютеров по всему миру.

Потребности формирования единого мирового информационного пространства привели к созданию глобальной компьютерной сети Internet. Internet - это глобальная компьютерная сеть, объединяющая многие локальные, региональные сети и включающая в себя десятки миллионов компьютеров. В каждой локальной сети имеется компьютер, подключенный к Internet, с высокой пропускной способностью - Internet-сервер.

2. Топология локальной компьютерной сети

Топологией сети называется физическую или электрическую конфигурацию кабельной системы и соединений сети.

В описании топологии сетей применяются несколько специализированных терминов:

  • узел сети – компьютер, либо коммутирующее устройство сети;
  • ветвь сети – путь, соединяющий два смежных узла;
  • оконечный узел – узел, расположенный в конце только одной ветви;
  • промежуточный узел – узел, расположенный на концах более чем одной ветви;
  • смежные узлы – узлы, соединенные, по крайней мере, одним путём, не содержащим никаких других узлов.

Существует всего 5 основных типов топологии сетей:

1. Топология “Общая Шина”. В этом случае подключение и обмен данными производится через общий канал связи, называемый общей шиной:

Общая шина является очень распространенной топологией для локальных сетей. Передаваемая информация может распространяться в обе стороны. Применение общей шины снижает стоимость проводки и унифицирует подключение различных модулей. Основными преимуществами такой схемы являются дешевизна и простота разводки кабеля по помещениям. Самый серьезный недостаток общей шины заключается в ее низкой надежности: любой дефект кабеля или какого-нибудь из многочисленных разъемов полностью парализует всю сеть. Другим недостатком общей шины является ее невысокая производительность, так как при таком способе подключения в каждый момент времени только один компьютер может передавать данные в сеть. Поэтому пропускная способность канала связи всегда делится здесь между всеми узлами сети.

2. Топология “Звезда”. В этом случае каждый компьютер подключается отдельным кабелем к общему устройству, называемому концентратором, который находится в центре сети:

В функции концентратора входит направление передаваемой компьютером информации одному или всем остальным компьютерам сети. Главное преимущество этой топологии перед общей шиной – большая надежность. Любые неприятности с кабелем касаются лишь того компьютера, к которому этот кабель присоединен, и только неисправность концентратора может вывести из строя всю сеть. Кроме того, концентратор может играть роль интеллектуального фильтра информации, поступающей от узлов в сеть, и при необходимости блокировать запрещенные администратором передачи.

К недостаткам топологии типа звезда относится более высокая стоимость сетевого оборудования из-за необходимости приобретения концентратора. Кроме того, возможности по наращиванию количества узлов в сети ограничиваются количеством портов концентратора. В настоящее время иерархическая звезда является самым распространенным типом топологии связей как в локальных, так и глобальных сетях.

3. Топология “Кольцо”. В сетях с кольцевой топологией данные в сети передаются последовательно от одной станции к другой по кольцу, как правило, в одном направлении:

Если компьютер распознает данные как предназначенные ему, то он копирует их себе во внутренний буфер. В сети с кольцевой топологией необходимо принимать специальные меры, чтобы в случае выхода из строя или отключения какой-либо станции не прервался канал связи между остальными станциями. Преимущество данной топологии – простота управления, недостаток – возможность отказа всей сети при сбое в канале между двумя узлами.

4. Ячеистая топология. Для ячеистой топологии характерна схема соединения компьютеров, при которой физические линии связи установлены со всеми рядом стоящими компьютерами:

В сети с ячеистой топологией непосредственно связываются только те компьютеры, между которыми происходит интенсивный обмен данными, а для обмена данными между компьютерами, не соединенными прямыми связями, используются транзитные передачи через промежуточные узлы. Ячеистая топология допускает соединение большого количества компьютеров и характерна, как правило, для глобальных сетей. Достоинства данной топологии в ее устойчивости к отказам и перегрузкам, т.к. имеется несколько способов обойти отдельные узлы.

5. Смешанная топология. В то время как небольшие сети, как правило, имеют типовую топологию – звезда, кольцо или общая шина, для крупных сетей характерно наличие произвольных связей между компьютерами. В таких сетях можно выделить отдельные произвольно подсети, имеющие типовую топологию, поэтому их называют сетями со смешанной топологией.

3. Основные компоненты компьютерной сети

Типичная компьютерная сеть включает в себя пять основных компонентов.

1. Основным составляющим элементом сети является настольный ПК, такой, как IBM-совместимый компьютер или Macintosh. Его называют «клиентом» или «рабочей станцией» (реже - автоматизированными рабочими местами или сетевыми станциями).

2. Сервером обычно является высокопроизводительный ПК с жестким диском большой емкости. Он играет роль центрального узла, на котором пользователи ПК могут хранить свою информацию, печатать файлы и обращаться к его сетевым средствам. В одноранговых сетях выделенный сервер отсутствует.

3. Каждый компьютер сети, включая сервер, оснащен платой сетевого адаптера (сетевым интерфейсом, модулем, картой). Адаптер вставляется в свободное гнездо (слот) материнской платы. Эти адаптеры связывают компьютер с сетевым кабелем. Многие ПК поставляются уже готовыми к работе в сети и включают в себя сетевой адаптер. Для построения сетей применяют 8-, 16- и 32-битовые сетевые платы. Сервер обычно оснащают 32-битовой картой. Для обычных рабочих станций используют недорогие 16-битовые.

4. Сетевые кабели связывают друг с другом сетевые компьютеры и серверы. В качестве сетевого кабеля могут применяться и телефонные линии. Основные типы сетевого кабеля:

– Витая пара (twisted pair) - позволяет передавать информацию со скоростью 10 Мбит/с (либо 100 Мбит/с), легко наращивается. Длина кабеля не может превышать 1000 м при скорости передачи 10 Мбит/с. Иногда используют экранированную витую пару, т. е. витую пару, помещенную в экранирующую оболочку.

– Толстый Ethernet - коаксиальный кабель с волновым сопротивлением 50 Ом. Его называют также желтый кабель (yellow cable). Обладает высокой помехозащищенностью. Максимально доступное расстояние без повторителя не превышает 500 м, а общее расстояние сети Ethernet - около 3000 м.

– Тонкий Ethernet - это также 50-омный коаксиальный кабель со скоростью передачи информации в 10 Мбит/с. Соединения с сетевыми платами производятся при помощи специальных (байонетных) разъемов и тройниковых соединений. Расстояние между двумя рабочими станциями без повторителей может составлять максимум 185 м, а общее расстояние по сети - 1000 м.

– Оптоволоконные линии - наиболее дорогой тип кабеля. Скорость передачи по ним информации достигает нескольких гигабит в секунду. Допустимое удаление более 50 км. Внешнее воздействие помех практически отсутствует.

5. Совместно используемые периферийные устройства - жесткие диски большой емкости, принтеры, цветные и слайд-принтеры, дисководы CD-ROM и накопители на магнитной ленте для резервного копирования.

Поскольку сети ПК состоят в основном из «клиентов» и «серверов», их часто называют сетями клиент/сервер.

4. Программные компоненты компьютерной сети

Сеть включает в себя три основных программных компонента:

1. Сетевую операционную систему, которая управляет функционированием сети. Например, она обеспечивает совместное использование ресурсов и включает в себя программное обеспечение для управления сетью. Операционная система состоит из серверного ПО, которое функционирует на сервере, и клиентского программного обеспечения, работающего на каждом настольном ПК.

Сетевая операционная система (network operating system) выполняется на сервере и обеспечивает его функционирование. Среди сетевых операционных систем преобладают Novell NetWare, Windows NT, Unix.

2. Сетевые приложения и утилиты - это программы, инсталлируемые и выполняемые на сервере. Они включают в себя ПО коллективного пользования и поддержки рабочих групп, такие как электронная почта, средства ведения календаря и планирования. Кроме того, в число таких программных средств могут входить сетевые версии персональных приложений, например, текстовых процессоров, электронных таблиц, программ презентационной графики и приложений баз данных. Наконец, к данному ПО относятся такие утилиты, как программы резервного копирования, позволяющие архивировать хранимые на сервере файлы и приложения.

3. Бизнес-приложения - это программы, реализующие в компании конкретные бизнес-функции. По своей природе они могут быть «горизонтальными» и применяться в компаниях самого разного типа для общих деловых операций (таких как бухгалтерский учет и ввод заказов) либо «вертикальными» и поддерживать осуществление конкретных коммерческих операций, например, оценку недвижимости, страхование либо использоваться в области здравоохранения или фирмах, оказывающих юридические услуги.

5. Отказоустойчивость и надежность хранения данных в локальных сетях

После ввода локальной сети в эксплуатацию она постепенно становится все более и более важным условием функционирования организации. Постепенно все данные с рабочих станций перекочевывают на сервера, на серверах накапливаются почтовые файлы, документы, базы данных, рабочие файлы и многое другое. Спустя несколько месяцев обычно оказывается, что при остановке сети может вообще прекратиться нормальная работа организации. На первое место встают вопросы отказоустойчивости сети и безопасности данных от сбоев аппаратуры и ошибок пользователей. Вообще говоря, эти вопросы следует иметь в виду уже на этапе проектирования сети и подбора оборудования, а не после факта потери информации.

Средства резервного копирования в основном применяются для ведения архивов данных и их восстановления в случае случайного удаления либо потери из-за сбоя оборудования. При всех своих достоинствах они не позволяют восстановить работу локальной сети в режиме реального времени. Если у Вас «полетел» системный винчестер, потребуется немало времени, чтобы установить сетевую операционную систему на новый диск и затем восстановить всю информацию. При выходе же из строя контроллера либо системной платы времени на ремонт либо замену потребуется еще больше. Поэтому на первый план выходит отказоустойчивость сервера сети.

Самым главным требованием к серверу является сам сервер Если вы возьмете большой корпус, быстрые контроллеры и диски, это отнюдь не сделает компьютер сервером. Серверы изначально проектируются, собираются и тестируются с требованием максимальной пропускной способности, надежности, отказоустойчивости и расширяемости. Соответственно их цена обычно в 1,5-3 раза выше, чем цена стандартных компьютеров сравнимой конфигурации. Не гонитесь за дешевизной!

Самым уязвимым местом являются механические компоненты сервера - источники питания, вентиляторы и, в первую очередь, дисковые накопители. Существует ряд стандартных решений, обеспечивающих отказоустойчивость дисковой подсистемы. Самый дешевый способ - с помощью штатных программных средств, включенных в сетевые операционные системы. Novell NetWare и Microsoft Windows NT, позволяют дублировать дисковые накопители («зеркальное отражение»), подключив к одному контроллеру несколько дисков и записывая информацию сразу на два идентичных диска. При выходе из строя одного из винчестеров выдается сообщение об ошибке, но работа сервера не останавливается. Вы можете заменить неисправный диск позже (в нерабочее время). Для того чтобы избежать сбоев из-за неисправности дискового контроллера, необходимо подключать «зеркальные диски» к разным контроллерам.

Фирма Microsoft пошла дальше и предложила в своей операционной системе Windows NT Server возможность «disk stripping» - программную реализацию идеологии RAID (Redundant Array of Inexpansive Disks). Подключив, например, три диска по 1,2 Гбайт и объединив их в «stripping set», вы получаете суммарную емкость 2,4 Гбайт. Это происходит за счет того, что информация не просто дублируется, как в случае «зеркального отражения», а распределяется по дискам - на два диска записываются данные, а на третий - их контрольная сумма. Выход из строя одного из дисков позволяет восстановить информацию по данным, находящимся на остальных дисках. Работа сервера опять-таки не останавливается, а диск вы сможете заменить в нерабочее время.

Программное резервирование дисков имеет и недостатки. Платой за надежность является снижение скорости работы и общей пропускной способности дисковой подсистемы. Поэтому в локальных сетях с большим количеством рабочих станций рекомендуется использовать аппаратные RAID-подсистемы. Они представляют собой несколько дисков высокой емкости, подключенных к интеллектуальному дисковому контроллеру, который имеет свой собственный процессор и свою память. Для сетевой операционной системы такая подсистема выглядит, как один большой винчестер, не требующий проверки чтением после записи (она реализуется аппаратно контроллером). Контроллеры конфигурируются для поддержки одного из основных уровней RAID. Перечислим их на примере четырех дисков по 1 Гбайту:

– RAID 0 - суммарная емкость дисковой подсистемы 4 Гбайта (без какого-либо дублирования информации). Такая схема позволяет увеличить пропускную способность дисковой системы сервера, так как данные пишутся параллельно на все четыре диска.

– RAID 1 - аналог «зеркального отражения». Требует четного количества дисков. Диски дублируются попарно. Суммарная емкость - 2 Гбайта.

– RAID 5 - суммарная емкость 3 Гбайта. Аналог «disk stripping». Такая схема позволяет экономить дисковое пространство без потери надежности.

RAID-системы предназначены для работы в серверах с большой нагрузкой на дисковую систему. Все заботы о разбиении данных, коррекции ошибок и диагностики берет на себя контроллер RAID. При возникновении сбоев диски заменяются в «горячем» режиме («hot swap»), т. е. без выключения сервера. Кроме того, пропускная способность такой подсистемы в несколько раз превышает показатели обычного дискового контроллера. В настоящее время RAID-системы поставляются практически всеми основными поставщиками серверов среднего и высокого уровня.

К сожалению, кроме дисковой подсистемы, может сломаться что угодно, хотя и с меньшей вероятностью. Для крупных организаций, основой работы которых является база данных, находящаяся на сервере локальной сети, остановка его работы даже на час может привести к большим финансовым потерям. Поэтому стоит внимательно присмотреться к средствам дублирования серверов как целого. Наиболее дешевым является наличие резервного компьютера (более слабого) с предустановленной идентичной операционной системой. В случае сбоя основного сервера подключается резервный, информация восстанавливается средствами резервного копирования, и фирма продолжает работать. Недостатком в данном случае является то, что обычно имеется вчерашняя копия и будут потеряны все сегодняшние изменения. Более практичным является сочетание дублирования дисковой подсистемы (т. е. на дисках информация сохранится в любом случае) и идентичных дисковых подсистем в основном и резервном серверах - вы сможете просто переставить диски с основного сервера и включить резервный.

В случае, если недопустимы ни малейшие перебои и остановки сети, необходимы средства дублирования серверов в реальном времени. Большое распространение получила технология SFT III (System Fault Tolerance) фирмы Novell. Для ее использования вам требуется операционная система NetWare 3.11 SFT III либо модуль SFT III для NetWare 4.1, а также два сервера с идентичной конфигурацией и специальные высокоскоростные адаптеры для связи серверов. Оба сервера работают одновременно в паре, а информация дублируется на каждый из них. При выходе из строя основного сервера происходит автоматическое переключение на резервный и выдается сообщение об ошибке. Серверы могут быть разнесены на расстояние до 2 километров (при использовании многомодового оптоволоконного кабеля) и находиться, например, в разных зданиях.

Аппаратным аналогом технологии SFT является решение фирмы Compaq - Standby Recovery Server (резервный сервер с загрузкой в «горячем» режиме). Для его реализации требуется два идентичных сервера Compaq Proliant (рекомендуются серверы в исполнении Rack Mount) и система хранения данных Compaq Storage System (общая для двух серверов). Оба сервера подключены в локальную сеть и к общей дисковой подсистеме, а также связаны между собой специальным кабелем Recovery Server Interconnect (стандарт RS-232). В режиме нормальной работы используется только один сервер, на котором дополнительно загружен Recovery Server Option Driver. Второй сервер находится в «ждущем» режиме. На нем работает только специализированный BIOS, который периодически отслеживает состояние основного сервера. В случае сбоя он отключает первый сервер от обшей системы хранения данных, подключает к ней резервный сервер и включает его. Задержка работы сети определяется временем загрузки сетевой ОС. Такая технология позволяет дублировать не только серверы с Novell NetWare, а также и Microsoft Windows NT. Кроме того, не требуется специализированная операционная система (достаточно одной копии обычной сетевой операционной системы).

Теперь рассмотрим более подробно существующие средства и устройства резервного копирования. В простейшем случае таким устройством может быть стример, установленный на сервере. Современные сетевые операционные системы имеют встроенные средства резервного копирования. Но в основном они предназначены для сохранения информации на конкретном сервере сети и не позволяют администратору архивировать всю сеть целиком (несколько серверов с различными сетевыми операционными системами и рабочие станции DOS, UNIX, Windows, Macintosh и др.), а также данные на серверах приложений (SQL-серверах). Кроме того, нет удобных средств по управлению процессом копирования.

С другой стороны, использование аппаратных средств резервного копирования, таких, например, как Intel Storage Express, не всегда оправдано. Хотя они и обеспечивают высокую скорость архивации, одновременную работу с несколькими устройствами, имеют большую емкость накопителей, у них есть и недостатки. Это высокая стоимость самого оборудования, использование собственных стандартов (что создает проблемы при выходе оборудования из строя), неопределенность с поддержкой новых версий сетевых операционных систем.

Исходя из сказанного выше, наиболее привлекательным с точки зрения цена/производительность представляется использование специализированного программного обеспечения независимых фирм, таких как Arcada, Cheyenne и других. Эти средства позволяют работать как со стимерами, так и с более современной аппаратурой.

Рассмотрим более подробно возможности такого программного обеспечения на примере одного из продуктов фирмы Cheyenne, предназначенного для работы в сетях Novell NetWare - ARC-Serve for NetWare v. 5.01 (Windows Edition). Реализованный в виде загружаемого модуля NetWare (NLM), он позволяет копировать и восстанавливать данные серверов NetWare и рабочих станций сети, работающих под управлением DOS, Windows, OS/2, UNIX и Macintoch, а также содержимое баз данных SQL-серверов. Стандартный Windows-интерфейс позволяет несколькими манипуляциями мыши выполнить резервное копирование всей сети, используя режим Quick Start. Режим работы Autopilot обеспечивает автоматическую смену лент (по выбранному временному циклу) и перемещение редко используемых данных с диска на ленту и поддерживает стандартный метод смены лент «Grandfather, Father, Son» (GFS) (что позволяет организовать ежедневное, ежемесячное и годовое копирование данных). Режим Disk Grooming автоматически освобождает дисковое пространство путем перемещения файлов с дисков сервера на ленту, если к ним не обращались в течение заданного периода времени.

Данный продукт поддерживает одновременную работу с несколькими стримерными устройствами и позволяет осуществлять каскадную или параллельную запись информации на магнитные ленты.

Для администратора сети важным представляется управление заданиями в очереди для выбранного сервера. После выполнения очередного задания отчет можно получить в виде сетевого сообщения, на принтер либо по электронной почте MHS. Сообщение для любого задания можно конфигурировать.

Использование модулей-агентов для архивирования рабочих станций сети не требует от пользователя регистрации логического соединения с сервером (т. е. выполнения операции login). Кроме того, существуют специальные агенты (Dbagent) для резервного копирования информации из активных серверов баз данных (NetWare Btrieve, NetWare SQL, Gupta, Oracle).

Полная совместимость с NetWare 3.1x и 4.х позволяет осуществлять резервное копирование системной информации, включая Bindery (3.1x) и NetWare Directory Services (4.x).

В настоящее время фирмой Cheyenne выпущены реализации ARCServe практически для всех сетевых операционных систем. Кроме того, существуют дополнительные средства для поддержки устройств автоподачи стимерных лент (tape autochanger), оптических дисков и библиотек на их основе (JukeBox).

Признанием технологии фирм Cheyenne и Arcada Software является наличие встроенных модулей-агентов в новой операционной системе фирмы Microsoft - Windows 9х. Кроме архивирования, эта технология применяется и для управления сетью.

Наряду со стандартными стримерами существует более перспективная аппаратура для архивирования - накопители для магнитооптических дисков. Основным их достоинством является возможность многократной перезаписи, высокая надежность и скорость архивации. Емкость одного диска формата 5,25″ составляет 1,3 Гбайт (в старых накопителях 630 Мбайт), а скорость доступа к диску составляет 25 мс - гораздо быстрее даже 4-х скоростного CD-ROM. Стоят такие накопители практически столько же, сколько CD-Recordable (устройство для записи CD ROM). Но на CD диск можно записать лишь один раз, а его емкость ограничена 650 Мбайт.

Заключение

В заключении хотелось бы сказать, что в данном реферате была рассмотрена наиболее актуальная в наше время тема: Компьютерные сети. Локальные компьютерные сети.

Современный человек, а особенно человек, занимающий руководящую должность, должен не просто знать, а чувствовать эту тему. Ведь современный бизнес просто не возможен без высоких технологий и, в частности, компьютерных сетей, позволяющих значительно увеличивать прибыль предприятий и организаций.

Список использованных источников

1. Шафрин Ю., Основы компьютерной технологии.- М.: АБФ, 1997
2. Журнал для пользователей персональных компьютеров Мир ПК.
3. Журналы Компьютер Пресс.
4. Еженедельник для предпринимателей и специалистов в области информационных технологий ComputerWeek Moscow.
5. Е.В. Михеева «Информационные технологии в профессиональной деятельности», Москва, 2005 г.
6. “Компьютерные технологии обработки информации” под редакцией С.В.Назарова
7. А.Н. Мезинов, А.Е. Щербухин «Компьютер для менеджера», 2003г.
8. Информатика. Практикум по технологии работы на компьютере под ред. Н.В.Макаровой

Реферат на тему “Компьютерные сети. Локальные компьютерные сети” обновлено: 11 сентября, 2017 автором: Научные Статьи.Ру

Как, если не через компьютерную сеть, можно осуществить обмен информацией больших объемов, обрабатываемой на разных компьютерах? Как затем распечатать эту информацию, если в офисе только один принтер? Как, наконец, обеспечить выход в Интернет всем сотрудникам Вашего предприятия? Эти и многие другие проблемы призваны решать компьютерные системы и сети.

Проектирование компьютерных сетей подразумевает колоссальную подготовительную работу, необходимую для того, чтобы выявить потребности Заказчика, определить задачи, которые должна выполнять будущая компьютерная сеть, выбрать способ ее построения и реализации, подобрать необходимое сетевое оборудование и рассчитать стоимость внедрения сети. Вот почему проект компьютерной сети никогда не обходится без опытных специалистов.

Организация компьютерной сети в наши дни – насущная необходимость, ведь представить себе бизнес-структуру, которая не использует в своей работе компьютеры, будь то строительная компания, банк или торговый центр, практически невозможно.

Качественное построение компьютерных сетей является, прежде всего, «головной болью» компании-исполнителя. Однако и Заказчику не мешает хотя бы в общих чертах представлять себе основной принцип построения компьютерных сетей, чтобы не стать ненароком жертвой мошенников.

Прокладка компьютерных сетей предусматривает и необходимость определить центры, в которых будут храниться, обрабатываться и оптимизироваться компьютерные данные. И лишь после этого начинается непосредственно .

Если подход к проектированию компьютерной сети был достаточно серьезным, то и будет произведен быстро и грамотно, и, как следствие, у Заказчика не возникнет проблем с последующей эксплуатацией сети.

Настройка компьютерной сети при условии ее грамотного осуществления позволяет достичь высоких результатов работы сети и всех ее компонентов. За счет последующих доработок и корректив можно с успехом оптимизировать работу системы и, как следствие, поднять ее производительность.

Тестирование компьютерной сети является завершающим этапом монтажа компьютерной сети, а кроме того и необходимым условием ее принятия в эксплуатацию. Тестирование дает возможность убедиться в качестве работы системы и нормальном функционировании всех сетевых приложений, а также гарантировать соответствие сети нормативным документам. Объективное тестирование компьютерной сети позволяет устранить как мелкие, так и серьезные недостатки в ее работе.

Работы по обслуживанию сетей компьютеров продолжаются до тех пор, пока Заказчик в них нуждается. Впрочем, ни для кого не секрет, что высокая производительность оборудования, входящего в состав сети, заключается, в частности, в постоянном контроле и диагностике его работоспособности. Поэтому по сути своей обслуживание компьютерной сети является бессрочным этапом работ.

Даже если на Вашем предприятии функционирует идеальная с Вашей точки зрения компьютерная система, это не значит, что абонентское обслуживание компьютеров сетей – ненужная графа в статье Ваших расходов.

В статьях о компьютерных сетях и современных телекоммуникационных технологиях представлены беспроводные компьютерные сети, Интернет коммуникации, Web коммуникации и телекоммуникационные технологии IoT/WoT. К Internet коммуникациям относятся: системы обмена сообщениями; on-line video; VoIP. К системам обмена сообщениями относятся службы, функционирующие в режиме off-line: E-mail, рассылка SMS и службы мгновенных сообщений: IRC, чаты, IM, PTT и так далее в режиме on-line.

Наиболее перспективными направлениями Интернет-коммуникаций являются Web - коммуникации в режиме реального времени. К Web - коммуникации относятся: p2p видеочаты на базе WebRTC; SIP-софтфоны в web интерфейсе на основе WebRTC, SIPML5, webrtc2sip; файлообменная платформа на основе API WebRTC Data Channel API; видеоконференции на основе HTML5 и API WebRTC и др. Одним из современных решений в сфере веб-коммуникаций являются технологии WebRTC, HTML5 с JavaScript и CSS3, платформа Node.JS, а также протокол WebSocket.

Браузеры, поддерживающие WebRTC, WebSocket и SIPML5 является единым средством (интерфейсом) для всех пользовательских устройств (ПК, смартфонов, iPad, IP-телефонов, мобильных телефонов и т.д.), которые обеспечивают Web-коммуникации в реальном времени.